ZBasic System Library
Reference Manual

Version 2.2.0

Copyright © 2005, 2006, 2007, 2008 Elba Corp. All rights Reserved.

Publication History

November 2005 First publication
December 2005 Added new routine descriptions, minor corrections

January 2006 Added new routine descriptions, minor corrections

February 2006 Minor corrections

May 2006 Added new routine descriptions, minor corrections

August 2006 Added new routine descriptions, minor corrections

October 2006 Added new routine descriptions, minor corrections

January 2007 Added new routine descriptions

February 2007 Added information on new ZX models

August 2007 Updated for a new ZX model and added new routine descriptions
March 2008 Updated for new ZX models and added new routine descriptions
Disclaimer

Elba Corp. makes no warranty regarding the accuracy of or the fitness for any particular
purpose of the information in this document or the techniques described herein. The
reader assumes the entire responsibility for the evaluation of and use of the information
presented. The Company reserves the right to change the information described herein
at any time without notice and does not make any commitment to update the
information contained herein. No license to use proprietary information belonging to the
Company or other parties is expressed or implied.

Trademarks

ZBasic, ZX-24, ZX-24a, ZX-24p, ZX-24n, ZX-40, ZX-40a, ZX-40p, ZX-40n, ZX-44, ZX-44a, ZX-44p, ZX-
44n, ZX-1280, ZX-1280n, ZX-1281 and ZX-1281n are trademarks of Elba Corp.

AVR is a registered trademark of Atmel Corp.

BasicX, BX-24 and BX-35 are trademarks of NetMedia, Inc.

PBasic is a trademark and Basic Stamp is a registered trademark of Parallax, Inc.

Visual Basic is a registered trademark of Microsoft Corp.

Other brand and product names are trademarks or registered trademarks of their respective owners.

Table of Contents

o TN =TSR o) VA OF= 1 (=To o] YOS SR 1
Type CONVErSION FUNCLONSoiiiiicie ettt sre e te e sraenneeneas 1
MathematiCal FUNCLIONS..........c.coiiiiiieice ettt esra e nnees 1
Memory-related ROULINES..........ooiiiiee e 2
String-related ROULINES.........cociiii et sbe e e e 2
INPU/OULPUL ROULINES ...ttt sttt re et sreeneenes 3
Serial CommuNICatioN ROULINES........cooiiiiiiieie e 4
Queue Management ROULINESccuiiiiiiiienieise ettt 4
Date/TIiME ROULINESeiiiecie ettt ettt sbe e nte et e e ntesneenneeneas 4
Data Manipulation ROULINES.........coiiiiiiiie ettt e e snae e 4
Task-related ROULINES.cccoiiiiiiieiice ettt 5
MiISCEIIANEOUS ROULINES. ..ottt bbbttt 5

RESOUICE USAQEco ittt nne et n e e nneen e nneas 7
7Y 3 RSSO 7
Y o I 1 01 (T = T USSP PR 7
ANalog-to-Digital CONVEITEIS.......cci ittt sre s 8
LY (=T A AT 0] PSR PUPPPPPPPPR 8
INTEITUPL SEIVICE ROULINES. ..ottt bbb 9
BT 41T €TSS 10

Detailed DESCIIPUIONSiiiii ittt e e s e et e et e e saeeabeesteesneeenreeanes 14
AADS et e b e bR e et re e 15
Y o 0 O SUPR PRSPPI 16
F Y L @4 o] @3 0] o 1 1 KPP PRTROTRR 17
N o T PP P PP PPPPPPTPTPR 19
AASIN bbb Rt e bt Rt e bt e b e Rt e Rt e bt b e e beene e re e 20
N o ST PRP 21
AINZ bbb bR bbb R bt bRt ettt eere e 22
=1 (OL 0] o)Y PP PR PPUPPPRO 23
BIOCKIMIOVE ...ttt et et e s be st e st e e teeneesreenteente s 24
BUSREAM ...ttt bbb b 25
BUSVVIIEE. ..ottt b ettt bbbt et been et e e et 26
CAIITASK .. et b bbb bbbt b et e et b e 27
(4 2 | PSPPSR 29
(0= o Lo SRRSO 30
(602 Y (RO PR PSPPSR 31
L0123V (Y = Y TP TPR 32
[O7=7 {110V SR USTRSSPR 33
4 o | TSRS 34
O | 01 ST PSP RPN 35
ClEAIQUEUE ...ttt et e et e e et e e e st e e e st e e e sab e e e sabeeesabeeebeeeebeeeeseeeeneeas 36

(101110 o] 1 o I RSOSSN 38
(O [0 1Y = 2 O 39
CUOSEPWM ...ttt ettt e et e st e e st e e st e e e st e e e st e e e sbbeeebteeeabaeeebreeenreas 40
(04 [0 11X VT = (o] 015 o T F SRR 41
(010151 =) G O LSOO 42
(011111 o] o] L= TSSOSO 43
COMLIODAC .ottt e et e e s e b e e e e et b e e e e s st aaeeesasbbeeeeaabbeeeesanbeeeeesansraeens 44
COMECRNANNEIS ...t e et e e st e e e s be e e sbe e e e abeeesbeeeeneeas 45
CONSOIE.IREAMA ...t e s e e st e e st e e e sbe e e e ete e e e tae e e aeeas 47
CONSOIE.REAALINEoei ittt b e s e e be e s be e sbee e beesbeesareesreeanes 48
(OF0] g 1Yo (=T YAT A4 (TSRS 49
(000] g EY0] [TV AV 1 1Y N[U= TSR 50
O 0 1 TSROSO OPPPRROPRPPR 51
COUNETIANSITIONS.eiiiiie ettt ettt ettt e et e et e e s ebe e e st e e e sab e e e sabeeesabeeesabeeebeeesnbeeesnneens 52
(04U L] (=TT o ISP 53
(1 = O3 1 T PSPPSR 54
[OF = O 56
(0201 [0 F T PSP PPPPRPPRPPPRPN 57
(O8] | OO UR 58
L0 [SR UPPRRRPPI 59
(O Y 0T TSRO PP ROPPPPUPRRPN 60
O 101 | o | 61
(10 1 I8 o [TP TP PRP PSPPI 62
DY X O = o RSOSSN 63
D= o1 U Lo 1 = 1) SRS OSRSN 64
DEFINEBUS ..ottt et st e e be e st e e s be e e b e e saeesateeabeesareesbeeenbeenrees 65
D L= 11 (=T O 0] 1 o HO OO 66
DLy 1 (ST OT0] 1 0 1 TSROSO 68
DLy (T[S0 G O OO OPRSUPRRRRR 69
D =Tl [0 - Vo [SRRSO 70
1311 = USSP 71
DelayUNTICIOCKTICKoviiiiiiiieee e 72
D 11ST=1 0111 [] SOOI 73
ENADIEINT ... e e e b e et e e et e e e anreeeaareean 74
(W = 1] LSRR URROPRRURRRURRIN 75
o TSP PPPRPPPPPPR 76
o 1 O SRS 77
6] 11 11T OO RSPPRRRR 78
e U RERT 79
= SO URROPRPRRPRRON 80
g TR URSTSRRPPPRRON 81

FIXUL Lot b bbbttt bbb bRttt e 83
3 SRS 84
Bl PBITSt bbb b e 85
] (o o USSP 86
1 0] TP P PR RPRPPR PSPPI 87
= Tod 1 0] o EE TP PURPRUPP 88
FrEOOUL ...ttt r et b e 89
LT 0 AT PRSP PRR P 91
GEILWIIEBYLE ...ttt st e be e se et e e nb e s e beeteene e 92
GEELWITEDALAevievieieie ettt bbbt e e et b e b be b e 93
GetADC (SUBIOULING TOMM) ...uvciiiic et 94
GEetADC (FUNCLION TOMM) . 95
LT £ | PSSR 96
GIDALE ...ttt b e e et be e Re e b e e be e bt enaneabeeenee e 97
GEtDAYNUMDET ...t r e e e re e reeeeenee e 98
GEtDAYOTWEEKcceee ettt ettt aeene e 99
GEIDAYOTY BAT ... ettt ettt bbbttt e b 100
GEIEEPROM ...ttt ettt ettt e sbe et r et e e te et e nneets 101
GEINIDDIE ... s 102
GEEPEISISTEINT.......uiitieiiciee ettt st b et e st bbb ans 103
GEPIN. ..t bbb bbbttt be e 104
GEIPTOGIMEIM ...ttt e nne s 105
GEIQUEUE ...ttt ettt h e bt et e e he e et e e ehe e et e e sab e e ab e e nbe e anb e e nbeeenbeesnnas 106
GetQUEUEBUTTEISIZEoc et 108
(CT= (@ U TTUT=T @0 10 [| SRR 109
GRIQUEBUEBSIT ...ttt e e e et e e e sttt e e e s st e e e e e st e e e e e sasseeeeannaeeeeaannteeeeennnens 110
LT i 1T 0 = S 111
GETIMESTAIMP. ...t e bbbttt e e bbb b ens 112
HIB YO <. r e 113
HIVWOIT ..ottt a bbb b e e et e bt nbe s 114
12 @1 4 1 s [0 SRRSO RTRPURTRPR 115
[2CGRIBYLE ... n e 117
[2CPULIBYLE......ceieeee bbb 118
L2 SHANT ...ttt b ettt e e e bt b e e e b e e aae e beenreeanee s 119
D @351 (o] o I TS T PRSP PP 120
OSSPSR RPRPRRPRRP 121
INPULCAPTUIE......eeeeeeee ettt b ettt ab e se e b e n e ne e 122
INPULCAPTUIEEX ... 123
=70 TH] T TR STTRPR 125
LA .. ettt e et E e et e R e e b e nRe e r e e reennes 126
0 ST SRR 127

L OB YL ettt e et e e nbe e e nnree s 129
0T od 1 1= T SR 130
0 o PP TP 131
[0 To i 1O TSP UR TP TSRO 132
(0] 0o 8] 1 1 o PP 133
[0} AY o] o F TR S PP 134
Y212 I 0] o SRS 135
IMBKE TN . .t b ekt b bttt e e bbb bt 136
IMABKEWOIT ...ttt b ettt s et st et e et e neenneenns 137
1= PP R O U R TP PRPPRTO 138
IMEIMAGAIESS ...ttt bbbt ettt et bbbt ens 139
1YL 0 VAN [0 [T TS 140
IMEIMCIMIP ottt b bttt b e bt bbbt n e n s 141
A L=T0 0 @0] o TR R TP PP 142
IVIBIMISEL ...ttt b et e e b e e e e e R e e e an e e b e e e e n e n e nne e 143
1Yo ST U T PP PP 144
1Yo LAY 0] o S 145
1Y SRR 146
N[0 1@ o TSP TR PO PT PP 147
(O] 1= 0 1@ 0] 1 o OSSP PRRUPRPPI 148
(O] 1= 0] 2 O TSP PPRRUPRPPI 150
OPENPWM L.ttt bbbt b ettt e b e nneens 152
OPENQUEBUE ...t b et b e nr e b e n e nneens 154
OPENSPLL ..ttt b ettt bt et be e nr e nrn e beeannan 155
(@01 a1 VAT =1 (od o1 1o To ST 156
(O] 01T 01 01 1 O T PP PP P SPPRRUPRTRPPI 157
OULPULCAPIUIE...... ettt b bbb sn e e e 159
OUIPULCAPTUIEEX ... 161
PANEYCRECK ...ttt se et bt et es 163
PAIUSE ... b e reenees 164
PEEKQUEUE.ottt et e s te e s be e st e e abe e e beesbeesabeenbeeenteesaeeenes 165
PEISISIENIPEEKc.ee ettt nneees 166
PISISIENIPOKEeiieeee et ettt es 167
PIAYSOUNG ...ttt b et e ettt sb e et et esne e e 168
0] 1=] | TSRS PP PP 170
P OV et 171
Pulseln (SUDIOULING FOIM)......ooiiiiiiiiiiee e 172
Pulseln (FUNCHION TOIM).......oii e 173
PUISEOUL ...ttt et b e bttt e bt e st st e e beeneenneenes 174
PULLWVITE .ot bbbttt bbbt et e st e et et e b et st beereenes 175
PULLWITEBYLEoeceeeceie ettt ettt e esre e te et eaneesteenaenraeteeneesneenes 176

Vi

PULLWVITEDIALA. ... eeeeeeeeeee et e e e e e e e ettt e e e e e e e e e eeaaeeenaaans 177

PULBIT ...ttt e et e e s e e et e e s be e e be e sabesab e e e be e e abeeeareebeenaeeebeenres 178
U {5 7 A 179
PULDALE e e e e s e e e e e e e e e e s s s et ab e e e e e e e e s s e arrbareraaaaeaaaan 181
PULEEPROM ...ttt ettt ettt te e b e st e et e et e e satesateenbeesnteesreeanes 182
PULINIDDBIE ...ttt et e b e st e e st e e b e e ebeesabeesbeeenbeesaeeenes 183
PULPEISISIENTottt et et b e e st e e s b e e s be e sbeesareesbeesnneesaeeenes 184
01 o T 185
PUIPTOGIMEBIM ... 186
PULQUEBUE ...ttt e e st e e e st e e e saa e e e bt e e e beeeenneeennneas 187
PULQUEBUEBYLEcoi ittt e st e e be e e sbn e e enneas 188
PULQUEUEBSIT ...ttt e e st e e e s e e e e e bt e e e e e anseeeeaansteeeeesntnneeeanns 189
U | 1T (O 190
PULTIMESTAIMP ..ottt b et nn et 191
PWVM ettt ettt ettt e e e e b e e et e et e e e bt e et e e e ae e et e e aate et e e e beeenbeeahreenbeeaaeeebeenres 192
= 1o I [] =T o OSSR 195
RAMPEEK ...ttt e st e st e e s te e s ae e e beeabe e sabeesbeesbeenbeeeraeas 196
RAMPEEKDWOIM. ...ttt ettt e s e e erbe e e sab e e sabee e sabeeeenees 197
RAMPEEKWOIU.......ooiiieie ettt ettt e e eabe e e saee e sbeeesabeeeeanes 198
RAIMPOKE ...ttt e e e et e e e s abe e e st e e e sab e e e beeesbbeeebeeeeneeeennes 199
RAMPOKEDWOIU.......ccviiitiiiiic ettt be e re e s b e st e e sbe e s be e saeesnbeenbeesnneens 200
RAMPOKEWOIT.oooiiecciiice ettt et e e e s e st e e st e e e beesbeesabeesbeesnnaeas 201
[T [0 [0] 1 0V = OO PR 202
RCTIime (SUBrOUtINE FOMM).......oouiiiiiiiiecie e 203
RCTIME (FUNCHION FOMM) ..o et nae e 204
RESEIIWVITE ...ttt ettt et e s bt et e e e be e st e e be e e abe e sbeesabeesbeesaseesbeesnbeenbeeanreens 205
RESEIPIOCESSONeie ittt e e e e s e e e s s b e e e e e et e e e e e anrae e e e e nnnreeens 206
LTS U (S Y = 1 OSSR 207
T | RSSO 208
Lo [PPSR 209
RUNTASKte ettt sttt et e et e e s be e st e e ebe e s st e e beesabeesbeeeabeebessnbeesbeesnbeesbeeanreens 210
Y= g F=T o] o (= SRS 211
Y=Y = 11NN [T] o T= G 212
SBEBILS .. vttt e e b e e e b r e aba e e e baeeabaaeanreeeanrs 213
SEUNTEIVAL ... et e e et e et e e bt e e e bt e e e eate e e naeeenes 214
Y <1 N L1 1 o PR 215
] 1181 ISR RROUPRRPROPPN 216
Y T = 217
] 4111 1 | SRRSO 219
SRIFOULIEX. ..o e ettt e et e et e e st e e s be e e sabeeesbteeeabbeesnteeeneeeeanes 220
] | IR R ORI OURRPRROPOTN 222
] 1 OSSR OPROTSRRPRORRON 223

vii

)| USSP PO UPPPPRT 225
Y741 PSSO 226
SIZEOFU .ottt e ettt nrenrenreeres 227
] (=T RSP PP PSRRI 228
S 0[O F= TSR OPPS 229
] o (041 4o F TSR PRRRRPP RPN 230
Yo | TP U U P TSP PP PPPPPPIO 232
SEACKCRNECK ...t re s 233
1) =110 £ @ 0] 1 [PRPR 234
STALUSQUEBUE ...t e e e e et e e et e e e e sae e e e e e aateeaessaneaeeesnsneeeeaanneneens 235
Y= UL SIS SS PR 236
] = 110 5, 1 O RS 237
Y (A0 [0 | =TSP P PR POTSOR 238
SEITCOMPAIE ...tttk e bt e et e e b et et e e e he e e be e eaeeesb e e sbeeanbeennneanneeas 239
S 1l T RSSO 240
Y1 L= 0] = T SRRSO 241
YL Y/ oL TP PRSP PP PRPPRO 242
SYSTEMLAIIOC. ...ttt b e nr b 243
SYSIEM.DEVICEID ...ttt bt nbe e 244
SYSIEIML T .. 245
System.HeapHEAUROOM............coiiiiice et nnens 246
SYSIEM.HEAPSIZE ...t e 247
System. TASKHEAAROOMcooiiiiiiiieieeee e e 248
1K= L PO TUPR 250
IR 5] 4] I T =T OSSR 251
JLIE= 51 4 532 11T OSSR 252
I8 L0 SR PS 253
TOSENUIMD L.ttt s et s et e e et et e e teebeeteese e e e seeseeeeseestesteereanes 254
TOQGIEBIES ...ttt bt es 255
LI TR PPRPOPPPTPRPPIS 256
6112 0] 0T o OSSR 257
O L= S = USRS 258
0] o 11 = T RPN 259
(@00 F= = [OSSPSR 260
VAIUB ..o ettt e e bt et e e b e e b e e e ae e teeae e re e te et e reenreenes 261
LY 111 1 S SRSSPSPS 262
VAIUEBSottt e et e st e b e et e e h e e te e be e ar e e re e re e reeereenns 263
A= T | RSP PPRR 264
WAt OTINEEITUDTttt b ettt e b ne e sre e 265
WaAItFOTINEIVAL.......ooiiiice ettt te et e e saaenas 269
LAY = ed o1 T T RSSO 271

System Library Reference

Routines by Category

The ZBasic System Library provides a rich collection of subroutines and functions that you can use to add
functionality to your application. The routines may be divided into several conceptual categories as
shown below.

Type Conversion Functions

CBit() convert a value to type Bi t
CBool () convert a value to type Bool ean
CByte() convert a value to type Byt e

CByt eArray()

convert an integral value to a reference to a Byt e array

Cint() convert a value to type | nt eger

CLng() convert a value to type Long

CNi bbl e() convert a value to type Ni bbl e

csng() convert a value to type Si ngl e

Cstr() convert a value to type Stri ng

CSt r Hex () convert a value to a St ri ng containing hexadecimal characters
CType() convert a value to an enumeration member

CUI nt () convert a value to type Unsi gnedl nt eger
CuLng() convert a value to type Long

Fi xB() convert a Si ngl e value to type Byt e

Fi xI () convert a Si ngl e value to type | nt eger

Fi xL() convert a Si ngl e value to type Long

Fi xUl () convert a Si ngl e value to type Unsi gnedl nt eger
Fi xUL() convert a Si ngl e value to type Unsi gnedLong
To<enun®() convert a value to an enumeration member

Mathematical Functions

Abs() absolute value

ACos () arc cosine

ASi n() arc sine

At n() arc tangent

At n2() arc tangent (quadrant-correct)

Cei ling() largest integer not greater than a Si ngl e value
Cos() cosine

DegToRad() convert degrees to radians

Exp() e’

Exp10() 10"

Fi x() integer portion of a Si ngl e value

Fl oor () smallest integer not less than a Si ngl e val ue
Fraction() fractional portion of a Si ngl e value

Log() natural logarithm

Logl10() common logarithm

Max () determine the largest of two values

M n() determine the smallest of two values

Pow() raise a value to a power

RadToDeg() convert radians to degrees

Si gnum() determine if a value is negative, zero or positive
Sin() sine

SngCl ass() return the class information for a Si ngl e value
Sqr () square root

Tan() tangent

Memory-related Routines

Bi t Copy ()

Bl ockMove()
GetBit()

Get EEPROM)

Get Persi stent ()
Cet ProgMem()
MemAddr ess()
MemAddr essU()
MemCnp()
MenCopy ()
MenSet ()

Per si st ent Peek()
Per si st ent Poke()
PutBit ()

Put EEPROM)

Put Per si stent ()
Put Pr oghem()
RanPeek()
RanPeekDwor d()
RanPeekWor d()
RamPoke()
RamPokeDwor d()
RanmPokeWor d()
System Al | oc()
System Free()

Syst em HeapHeadRoon()

Syst em HeapSi ze()
VarPtr ()

String-related Routines

Asc()

Chr ()

Frt ()
LCase()
Left()

Len()

M d()

Ri ght ()

St r Addr ess()
St r Conpar e()
StrFind()

St r Repl ace()
StrType()
Trim()
UCase()

Val uel ()

Val uel()

Val ueS()

copy a sequence of bits from one part of RAM to another
copy data from one part of RAM to another

extract a bit from a value in RAM

copy data from Program Memory to RAM

copy data from Persistent Memory to RAM

copy data from Program Memory to RAM
determine the RAM address of a variable
determine the RAM address of a variable

compare two blocks of data in RAM

copy data from one part of RAM to another
initialize a block of memory with a byte value

read a byte from Persistent Memory

write a byte to Persistent Memory

set or clear a bit in a value in RAM

copy data from RAM to Program Memory

copy data from RAM to Persistent Memory

copy data from RAM to Program Memory

read a byte from RAM

read a 32-bit value from RAM

read a 16-bit value from RAM

write a byte to RAM

write a 32-bit value to RAM

write a 16-bit value to RAM

allocate a block of memory

deallocate a block of memory

determine the amount of unused space in the heap
determine the amount of space reserved for the heap
determine the RAM address of a variable

extract a character value from a string

convert a character value to a string

convert a Si ngl e value to a string

convert upper case letters to lower case in a string

return the leftmost characters from a string

determine the number of characters in a string

extract or set a substring in a string

return the rightmost characters from a string

determine the address where string characters are stored
compare two strings, optionally ignoring alphabetic case
search for the first occurrence of a string within a string
replace character sequences in a string

determine the characteristics of a string

remove leading and trailing spaces from a string

convert lower case letters to upper case in a string
convert string characters to the equivalent | nt eger value
convert string characters to the equivalent Long value
convert string characters to the equivalent Si ngl e value

Input/Output Routines
ADCt oComL()
BusRead()
BusWite()

Cl osel 2C()

Cl osePWM)

Cl 0seX10()

Comilt oDAC()
Count Transi tions()
DACPI n()

Def i neBus()

Def i neX10()
FreqQut ()

Get IWre()

Get IW reByte()
Get 1W reDat a()
Get ADC()

Get Pi n()

| 2CCd ()

| 2CGet Byt e()

| 2CPut Byt e()

| 2CStart ()

I 2CSt op()

I nput Capt ure()

I nput Capt ur eEx()
Openl 2C()
OpensSPI ()

OpenPWV()
OpenX10()

Qut put Capt ure()
Qut put Capt ur eEx()
Pl aySound()
PortBit()

Pul sel n()

Pul seCQut ()

Put 1W re()

Put 1W r eByt e()
Put 1W r eDat a()
Put DAC()

Put Pi n()

PWM()

RCTi nme()

Reset 1Wre()
Shiftln()

Shi ft 1 nEx()
Shi ft Qut ()

Shi ft Qut Ex()
SPI Cnd()

St at usX10()
X10Cnd()

stream analog conversion data to Com1
read data from a bus-oriented device

write data to a bus-oriented device
deinitialize an 12C communication channel
deinitialize an PWM channel

deinitialize an X-10 communication channel
receive stream of analog conversion data
count transitions on an input pin

produce an analog voltage on an output pin

specify the parameters for accessing a bus-oriented device
specify the communication parameters for an X-10 channel

produce a dual-frequency sine wave on an output pin
receive a bit using the 1-Wire protocol

receive a byte using the 1-Wire protocol

receive one or more bytes using the 1-Wire protocol
perform an analog to digital conversion on an input

read the state of an input pin

send/receive data over an 12C channel

receive a byte on an 12C channel

send a byte on an 12C channel

create a Start condition on an 12C channel

create a Stop condition on an 12C channel

record the high/low times of a pulse train on an input pin
record the high/low times of a pulse train on an input pin
prepare for 12C communication with an external device
prepare for SPI communication with an external device
prepare for PWM generation

prepare an X-10 communication channel for use
produce a pulse train

produce a pulse train on any output pin

reproduce sampled audio on an output pin

compose a designator for a specific bit in an /O port
measure a pulse width on an input pin

generate a pulse on an output pin

send a bit using the 1-Wire protocol

send a byte using the 1-Wire protocol

send one or more bytes using the 1-Wire protocol
produce an analog voltage on an output pin

configure an 1/O pin

initiate PWM generation or change the duty cycle
measure an RC charge/discharge time

send a reset signal using the 1-Wire protocol

perform synchronous serial input

perform synchronous serial input with more configurability
perform synchronous serial output

perform synchronous serial output with more configurability

perform SPI communication with an external device
determine the status of an X-10 communication channel
send commands using the X-10 protocol

Serial Communication Routines

Debug. Pri nt

Cl oseCom()
ContChannel s()
Consol e. Read()
Consol e. ReadLi ne()
Consol e. Wite()
Consol e. Wi teLine()
Def i neCom()

Def i neConB()

OpenCom()
St at usCom()

send strings to Com1 via the system output queue
terminate the use of a serial channel

prepare for using multiple serial channels

retrieve a character from Com1 via the system input queue
retrieve a line from Com1 via the system input queue
send a string to Coml1 via the system output queue
send a string to Coml1 via the system output queue
set the characteristics of a serial channel

set the characteristics of serial channel 3

prepare a serial channel for use

determine the status of a serial channel

Queue Management Routines

Cl ear Queue()
Get Queue()

Get QueueBuf fer Si ze()

Get QueueCount ()
Get QueuesStr ()
OpenQueue()
PeekQueue()

Put Queue()

Put QueueByt e()
Put QueueStr ()
St at usQueue()

Date/Time Routines
CGet Dat e()

Get DayNumber ()
Get Day Of Week()
Get DayOf Year ()
Get Ti me()

Get Ti nest anmp()
Put Dat e()

Put Ti me()

Put Ti meSt anp()
Ti mer ()

delete data from a queue

retrieve data from a queue

determine the size of the data area of a queue
determine the number of bytes of data in a queue
populate a string with characters from a queue
prepare a queue for use

copy data from a queue without removing it
put data in a queue

put a byte into a queue

put the characters of a string in a queue
determine if a queue has data available

get the month, day, year corresponding to a date value
compute the day number corresponding to a day of a year
get the day of the week corresponding to a date value

get the ordinal day of the year corresponding to a date value
get the current hour, minute and second

get the current date and time information

set the current month, day, year

set the current hour, minute and second

set the current date and time information

get the current clock tick value

Data Manipulation Routines

FlipBits()
Hi Byte()

Hi Wor d()
LoByt e()
LoWor d()
MakeDwor d()
MakeWor d()
MakeSt ring()
M dWor d()
SetBits()
Shi ()

Shr ()
Toggl eBi ts()

reverse the order of bits in a byte

extract the high byte of a value

extract the high word of a value

extract the low byte of a value

extract the low word of a value

construct a 32-bit value from two 16-bit values
construct a 16-bit value from two 8-bit values
construct a string from a sequence of bytes
extract the middle two bytes of a 4-byte value
set the state of specified bits in a byte

shift a value to the left

shift a value to the right

change the state of specified bits in a byte

Task-related Routines

Cal | Task prepare a task to begin execution

Di sabl el nt () disable interrupts

Del ay() pause a task

Del ayUnti | C ockTi ck() pause a task

Enabl el nt () conditionally re-enable interrupts

Exit Task() cause a task to terminate

LockTask() suspend normal task switching

Pause() pause a task without relinquishing control
ResumeTask() cause a waiting task to resume execution
RunTask() cause a specific task to run

Semaphor e() coordinate the use of a resource

Set I nterval () set the interval timer period

Sl eep() pause a task

St ackCheck() enable or disable stack checking

St at usTask() determine the status of a task

Syst em TaskHeadRoon{) determine the unused space in a task’s stack
Taskl sLocked() determine if a task is locked

Taskl sVval i d() determine if a task stack is in the task list
Unl ockTask() resume normal task switching

Updat eRTC() update RTC registers to account for missed ticks
VWai t ForInterrupt () pause a task until an external event occurs
Wai t For I nterval () pause a task until an interval timer expires
Yi el d() allow another task to run

Miscellaneous Routines

Cl oseWat chDog() deactivate the watchdog timer

CPUSI eep() cause the CPU to go into sleep mode

CRC16() compute a 16-bit CRC value

CRC32() compute a 32-bit CRC value

FirstTinme() determine if this is the first the program has been run since downloading
I1f() select the value of one of two expressions

LBound() determine the lower bound of an array

LongJdmp() perform a non-local goto (e.g. for exception handling)
NoOp() execute a “nop” instruction

OpenWat chDog() activate the watchdog timer

ParityCheck() check the parity of a data byte

Random ze() initialize the random number generator

Reset Processor () reset the CPU

Rnd() retrieve the next random number

Seri al Nurmber () retrieve the system software serial number

Set Jnp() prepare for a non-local Goto (e.g. exception handling)
Si zeOF () determine the size of a data item

Si zeOF U() determine the size of a data item

Syst em Devi cel D() retrieve the identification characters for the device
UBound() determine the upper bound of an array

Wat chDog() reset the watchdog timer

Resource Usage

The AVR devices on which the ZX microcontrollers are based offer a variety of resources for use in your
program, e.g. timers, interrupts, USART (hardware serial port), analog-to-digital converters, etc. Some of
these resources are allocated to specific functions of the ZX microcontroller and/or are used by certain
ZBasic System Library routines. The resources available on a particular ZX device vary depending on
the particular CPU upon which the device is based. The table below indicates the underlying CPU for the
various ZX devices. The remainder of this section provides an overview of resource allocation for ZX
devices.

Underlying CPU Type for ZX Devices

ZX Model CPU Type
ZX-24, ZX-40, ZX-44, ZX-24e mega32
ZX-24a, ZX-40a, ZX-44a, ZX-24ae mega644
ZX-24p, ZX-40p, ZX-44p, ZX-24n, ZX-40n, ZX-44n mega644P
ZX-1280, ZX-1280n megal280
ZX-1281, ZX-1281n, ZX-1281e megal28l
ZX-128e megal28

USART

An on-board hardware serial port, or USART, is used for the Com1 serial channel. By default, the
USART is configured to operate at 19,200 baud and is utilized by the System Library Routines
Console.Read, Console.ReadLine, Console.Write, Console.WriteLine and Debug.Print. You may
reconfigure the USART to a different speed by using the System Library routine OpenCom, specifying
channel 1. The USART is also used for the ADCtoCom1 and Com1toDAC routines. In both of these
cases, the Coml speed is automatically configured.

Some ZX devices have more than one hardware USART. In these cases, one of the USARTS is
assigned to the Com1 serial channel, a second USART is assigned to the Com2 serial channel, etc. as
shown in the table below. The effect of these assignments is generally only important with respect to
which I/O pins are available for other purposes if the additional hardware USARTSs are not being used. It
also will be important if your program manipulates the USART registers directly.

Hardware USART Channel Assignment and I/O Pin Usage

ZX Model USART Serial Channel Tx Pin Rx Pin
ZX-24p, ZX-24n USARTO Coml 1,D.1 2,D.0
USART1 Com2 11,D.3 6,D.2
ZX-40p, ZX-40n USARTO Comil 15,D.1 14,D.0
USART1 Com2 17,D.3 16,D.2
ZX-44p, ZX-44n USARTO Coml 10,D.1 9,D.0
USART1 Com2 12,D.3 11,D.2
ZX-1281 USART1 Coml 28,D.3 27,D.2
USARTO Com2 3,E.1 2, EO
ZX-1280 USARTO Coml 3,E.1 2, EO
USART1 Com2 46, D.3 45,D.2
USART2 Com7 13, H.1 12, H.0
USART3 Com8 64,J.1 63,J.0
ZX-128e, ZX-1281e USARTO Coml 19, E.1 20, E.O
USART1 Com2 9,D.3 10,D.2

SPI Interface

On some ZX devices, your program is stored in an external EEPROM that is read and written using the
SPIl interface. A dedicated I/O pin is required for selecting the EEPROM device during SPI operations
and this I/O pin cannot be used for other purposes. However, the SPI bus itself can be used to

communicate with other SPI devices. Although most SPI devices are tolerant of the ZX device using the
SPI bus to fetch instructions from your program, a few are not. Generally speaking, if you can send and
receive all of the data that an SPI device requires using a single call to SPI Cnd() , then that SPI device is
usable with the ZX models that utilize an external EEPROM. The table below indicates which devices
use an external EEPROM for user programs and, if so, the I/O pin used for the chip select.

SPI Channel and EEPROM Usage

ZX Model Uses SPI EEPROM SPI CS Pin
ZX-24, ZX-24a, ZX-24p Yes B.4
ZX-40, ZX-40a, ZX-40p Yes 5 B4
ZX-44, ZX-44a, ZX-44p Yes 44,B.4
ZX-24e, ZX-24ae Yes 24, B4
ZX-24n, ZX-40n, ZX-44n No 10, B.O
ZX-1281, ZX-1281n No 10, B.O
ZX-1280, ZX-1280n No 19, B.O
ZX-128e, ZX-1281e No 28, B.0

It is important to note that even for the devices that do not use the external SPI EEPROM, the SPI CS pin
cannot be used as a general input if the SPI bus is used in your application. This restriction is an artifact
of the design of the CPU’s SPI controller. The SPI CS pin can, however, be used as a general purpose
output.

Analog-to-Digital Converters

Most ZX devices support up to 8 analog inputs. These inputs may be fed to the internal analog-to-digital
converter (ADC) or they may be used to perform analog level comparisons. The 1/O port containing the
analog inputs varies by ZX device as indicated in the table below. The System Library routines

Get ADC() and ADCt oComL() use the ADC. The analog comparator is used by Wai t For I nt er r upt ()
when configured to await an analog comparator event.

Analog Input Ports by CPU Type

Underlying CPU Type Analog Port 1 Analog Port 2
nmega32, nega644, negab644P Port A -
nmegal28, negal281 Port F -
megal280 Port F Port K

Interrupts

Some of the System Library routines disable interrupts in order to achieve the precise timing that is
required. Having interrupts disabled for long periods of time can interfere with the operation of other parts
of the system that use interrupts like task management, serial I/O and the real time clock. In most cases,
the System Library routines have been implemented to keep track of real time clock interrupts that should
have occurred during the time interrupts are disabled and then the RTC is updated at the end of the
operation. This strategy avoids the problem of the RTC losing time.

Unfortunately, there is no way to similarly protect the serial I/O process. You can reduce the impact of
having interrupts disabled with respect to serial output by ensuring that all serial output queues are empty
before calling a System Library routine that disables interrupts. This is not as critical for a hardware-
based serial channel (e.g. Com1) as it is for the software-based serial channels Com3 to Com6. There is
no way, however, to work around the problem of serial input data arriving while interrupts are disabled.
The hardware-based serial channels will store one received character and hold it while interrupts are
disabled but if a second character arrives while interrupts are disabled it will be lost. Channels 3-6 rely on
interrupts for every bit received so the situation is much more problematic. In this case, having interrupts
disabled for longer than approximately one-third of the bit time will likely cause garbled input if a
character’s transmit time overlaps the period when interrupts are disabled. For characters being
transmitted by channels 3-6, having interrupts disabled for more than about 10% of the bit time may
cause the receiver to lose synchronization.

For reference purposes, the table below indicates which I/O routines disable interrupts for the duration of
their execution. See the individual descriptions for more detailed information.

System Library Routines that Disable Interrupts

Count Transi ti ons | 2CPut Byt e RCTi me
DACPi n Pl aySound Reset 1IWre
Fr eqQut Pul sel n Shiftln
GetlWre Pul seQut Shi ft 1 nEx
Get 1W reByt e Put 1Wre Shi f t Qut
Get 1W r eDat a Put 1W r eByt e Shi f t Qut Ex

| 2CCrd
| 2CCet Byt e

Put 1W r eDat a
Put DAC

Interrupt Service Routines

For the native code devices (e.g. ZX-24n), a few interrupt service routines (ISRs) are always included in
your program (e.g. for Coml1 and the RTC) while others are included only if certain System Library
routines are used in your program. In some cases, the additional ISRs that are included when a specific
System Library routine is used depends on how the routine is invoked and what the compiler can deduce
regarding which ISRs might be needed. For example, if OpenCom() is invoked one or more times but the
compiler can determine that the Coml is always the channel being used, no additional ISRs are included
since the Coml ISRs are always included. On the other hand, if the compiler cannot determine which
channel is being opened in one or more cases, it includes the ISRs for all Com channels, both hardware-
based and software-based channels.

In the description of each System Library routine, information is given about the set of ISRs might be
included in your program if you use that routine. This information is only important, of course, if you are
also providing one or more ISRs in your code because conflicts may arise. (See the section entitled
“Defining Interrupt Service Routines” in the ZBasic Language Reference Manual for more information on
how this is done.) The table below gives an overview of which System Library routines may cause ISRs
to be included atomatically in your program. The shaded entries represent ISRs that are always included.

System Library Routines that May Load ISRs

Routine mega644P Megal281 megal280
ADCToComl() Ti mer 1_ConpA Ti mer 4_ConpA Ti mer 4_ConpA
ComlLToDAC() Ti mer 1_ConpA Ti mer 4_ConpA Ti mer 4_ConpA
| nput Capt ure() Ti mer 1_Capt Ti mer 1_Capt Ti mer 1_Capt
Ti mer 1_Ovf Ti mer 1_Ovf Ti mer 1_Ovf
Ti mer 3_Capt Ti mer 3_Capt
Ti mer 3_Ovf Ti mer 3_Ovf
Ti mer 4_Capt
Ti mer 4_Ovf
Ti mer 5_Capt
Ti mer5_Ovf
OpenCom() USARTO_RX USARTO_RX USARTO_RX
USARTO_TX USARTO_TX USARTO_TX
USARTO_UDRE USARTO_UDRE USARTO_UDRE
USART1_RX USART1_ RX USART1_RX
USART1_TX USART1_TX USART1_TX
USART1_UDRE USART1 UDRE USART1_UDRE
USART2_RX
USART2_TX
USART2_UDRE
USART3_RX
USART3_TX

Ti mer 2_ConpA

Ti mer 0_ConpA

USART3_UDRE
Ti mer 0_ConpA

OpenX10() I NTO | NTO | NTO
Ti mer 0_ConpB Ti mer 2_ConpB Ti mer 2_ConpB
Qut put Capt ure() Ti mer 1_ConpB Ti mer 1_ConmpB Ti mer 1_ConmpB
Ti mer 1_ConmpC Ti mer 1_ConmpC
Ti mer 3_ConpB Ti mer 3_ConpB
Ti mer 4_ConpB
Ti mer5_ConpB

Wai t ForInterrupt () |NTO | NTO | NTO
I NT1 I NT1 | NT1
I NT2 | NT2 | NT2
| NT3 | NT3
| NT4 | NT4
| NT5 I NT5
| NT6 | NT6
| NT7 | NT7
PCl NTO PCI NTO PCl NTO
PCl NT1 PCI NT1 PCI NT1
PCl NT2 PCl NT2 PCl NT2
PCl NT3

Anal og_Conp Anal og_Conp Anal og_Conp

Timers

ZX devices have three or more timers, depending on the underlying CPU type, that are used for various
purposes. One of the timers is used to implement the real time clock (RTC), another is used for the
software-based serial ports and a third timer is used to provide the precise timing required for certain 1/0
routines. The specific timer that is used for a particular function varies depending on the underlying CPU
type as shown in the table below.

Timer Usage by CPU Type

Underlying CPU RTC 110 Serial PWM InputCapture OutputCapture
mega32 TimerO Timerl Tinmer2 Ti mer 1 Ti merl Ti mer 1
mega644 TimerO Timerl Tinmer2 Ti mer 1 Ti merl Ti mer 1
mega644pP Timer0O Timerl Tinmer2 Ti mer 1 Ti merl Ti mer 1
megal28 Timer0O Tinmerl Tiner2 Timer1/3 Timer1/3 Timer1/3
nmegalzgl Timer2 Timerd TinmerO Tinmerl/ 3 Tinmerl/ 3 Timerl/ 3
nmegalz80 Timer2 Timerd TimerO Timerl/3/4/5 Tinmerl/3/4/5 Timerl/ 3/4/5

The RTC Timer is programmed to generate an interrupt that is used to update the RTC and to trigger task
switching. Because its role is so central, the RTC Timer cannot be used for any other purpose. The I/O
Timer is used by several I/O related routines as explained in more detail below. The Serial Timer is used
to generate interrupts to implement the timing required for serial channels Com3 to Com6. If none of the
channels 3-6 is open, the Serial Port Timer can be used for other purposes in your program. Timers are
also used for some specialized I/O functions as indicated in the table above.

For each timer, there exists a built-in variable that indicates when the timer is in use. For example,
Regi st er. Ti mer OBusy is a Boolean value that indicates when TimerQ is in use. Prior to using a timer,

the system checks the value of this variable to see if it is already being used. If it is not in use, the system
sets the flag to Tr ue and then proceeds to use the timer. When it is finished using the timer, the system
sets the busy flag to Fal se. Your program may do the same by passing the Register variable as a
parameter to the Semaphor e() function.

10

I/O Timer Pre-scaler Values

Some of the System Library routines that use a timer allow you to modify the frequency used to clock the
timer while others use a fixed frequency determined by the requirements of the routine. The routines that
do allow frequency modification are divided into two groups, one controlled by the value of

Regi st er. Ti mer Speedl and the other controlled by the value of Regi st er. Ti mer Speed2. The
table below shows the System Library routines that use a timer and, where applicable, the timer speed
variable that controls the timer frequency.

System Library Routines Using TimerSpeed Values
Routine TimerSpeed Value
ADCt oComi ()

Conilt oDAC()

Count Transi ti ons() T
FreqQut ()

Get 1Wre()

Get 1W reByte()

Get 1W reDat a()

mer Speed1?

| 2CCnd() 2 Ti mer Speed1
| 2CGet Byt e() ? Ti mer Speed1
| 2CPut Byt e() ? Ti mer Speed1
| nput Capt ure() Ti mer Speedl
| nput Capt ur eEx() Ti mer Speedl
Cut put Capt ure() Ti mer Speedl
CQut put Capt ur eEx() Ti mer Speedl
CpenPWM()

RCTi ne() Ti mer Speed2?
Pl aySound()

Pul sel n() Ti mer Speed2?
Pul seCQut () Ti mer Speed2?
Put IWre()

Put 1W r eByt e()
Put 1W r eDat a()

PWW()

Reset IWre()

Shiftln() Ti mer Speedl
Shi ftlnEx() Ti mer Speedl
Shi ftout () Ti mer Speedl
Shi ft Qut Ex() Ti mer Speedl
X10Cnd()

Notes:

1) The timer frequency is scaled. See below.
2) The timer is used only for channels 1-4.

The default value of Regi st er . Ti mer Speed1 is 1 and the default value for Regi st er. Ti mer Speed?2
is 2. The table below shows the correspondence between the allowable values for the TimerSpeed
registers and the resulting clock frequency applied to the 1/O Timer. The divisor specified is applied to the
CPU clock frequency to yield the I/O Timer clock frequency. For compatibility with BasicX (but only for ZX
processors running at 14.7456MHz), some of the routines effectively divide the timer frequency by 2 so
that the time units associated with parameters or return values is preserved. If you change the timer
speed setting, the scale factor is still applied.

11

TimerSpeed Pre-Scaler Values

TimerSpeed Value Divisor Timer Clock Freq. Timer Clock Period
0 n/a 0 Hz -
1 1 14.7456 MHz 67.8nS
2 8 1.8432 MHz 542nS
3 64 230.4 KHz 4.34)S
4 256 57.6 KHz 17.44S
5 1024 14.4 KHz 69.4S
6 n/a External — T1 falling edge -
7 n/a External — T1 rising edge -

Note that setting the value of either of the timer speed registers other than by direct assignment using an
assignment statement will produce undefined results. Also note that on the ZX-24 series devices, the T1
input signal is common with Port C, bit 7. If you wish to use an external clock source you'll have to
configure pin 5 to be an input so as not to interfere with that signal. Of course, transitions on Port C hit 7
can be used to clock the timer when the T1 input signal is selected.

There are several important facts to keep in mind if you modify either of the timer speed values. Firstly,
the timer speed values are initialized by the system when it begins running and they are never modified
by the system thereafter. If you change a timer speed value, that value will be used by all of the related
System Library routines until you change it again. Secondly, values returned by some of the System
Library routines are scaled based on the default timer speed values. If you change the timer speed, you'll
have to apply an additional scale factor in order to get the correct results. For example, if you set

Regi st er. Ti mer Speed2 to 3 and then call the subroutine Pul sel n(), a pulse having a width of

100uS will return the value of approximately 12.5)S since the clock speed that you specified is 1/8 that of
the default. In order to get the correct pulse width, in seconds, you will have to multiply the value returned
by 8. Those return values that are not scaled to seconds represent a number of periods of the timer
frequency. So, for example, if you change Regi st er. Ti mer Speed1l to 2, the values returned by

| nput Capt ur e() represent units of 542nS instead of the default 67.8nS.

The other Register value related to the I/O Timer is the “timer busy” flag, e.g. Regi st er. Ti mer 1Busy.
Whenever a System Library routine that requires the I/O Timer prepares to execute, it first checks the
value of this Boolean flag to see if the timer is already in use. If the flag is Tr ue, the routine will not
execute; usually returning without doing anything (but see the descriptions of the various routines for
specific details). If the flag is Fal se, the routine sets it to Tr ue and then goes about using the timer.
When it has finished its function, it sets the flag back to Fal se.

Your code can use the timer busy flag as the parameter to the Semaphor e() function in order to get

exclusive access to the timer. Of course, you must set timer busy flag to Fal se when your code is

finished with the timer to indicate that the timer is no longer in use. Likewise, you may want to acquire a

semaphore on a timer busy flag for the 1/0O Timer before calling a System Library routine that uses 1/O

Timer. If you succeed in setting the semaphore you'll know that the timer is not already in use. An

example of code for this purpose (for ZX devices that use Timerl for the I/O Timer) is shown below.

" wait until the timer is available

Do Wiile (Not Semaphore(Register. Timer 1Busy))
Call Sleep(0.5)

Loop

' use the tiner

Call LockTask()

Regi ster. Ti ner 1Busy = Fal se

Call shiftout(12, 13, 8, &H55)

Cal | Unl ockTask()

Note, particularly, the line immediately before the call to Shi ft Qut () . After the semaphore is acquired

Regsi st er. Ti mer 1Busy will be True. Unless it is set to Fal se, the call to Shi ft Qut () will fail
because that subroutine will think that the timer is in use.

12

Caution: setting the busy flag for a timer to Tr ue and never setting it back to Fal se will prevent System
Library routines that require that timer from functioning.

13

Detailed Descriptions

In the descriptions that follow, the parameter types that are accepted by each routine are described.
Some parameters accept a specific fundamental data type while others may accept a few similar types.
Others accept virtually any parameter type. In order to more succinctly describe the types of parameters
accepted, some descriptive type categories are used. For example, the category integral is used to
connote those types that have the integral characteristic, such as Byt e, | nt eger, Unsi gnedl nt eger,
Long and Unsi gnedLong. The table below indicates which types belong to which categories.

Type Category Membership

Type/Category any type integral int8/16 intl6 int32 any 32-bit signed numeric
Bool ean X

Bi t

Ni bbl e

Byt e

I nt eger

Unsi gnedl nt eger
Enum

Long

Unsi gnedLong

Si ngl e

String

X X X X X
X X X X X
X X X X X

X X X X X X X X X X
x
x
x
X
x

The remainder of this document presents complete descriptions of each of the System Library routines,
arranged in alphabetical order. Unless specifically noted otherwise, the descriptions apply to all ZX
models. In some cases, a routine exhibits different behavior in BasicX compatibility mode or operates in
a manner that is slightly different from that implemented in the BasicX environment. In these cases, the
heading Compatibility will appear in the description detailing the differences. The advanced System
Library routines that are not present in the BasicX environment are also similarly noted. If you are not
using BasicX compatibility mode or are not upgrading BasicX code these notations may be safely
ignored.

14

ADbs

Type Function returning the same type as the parameter

Invocation Abs(arg)

Parameter Method Type Description

arg ByVal numeric The value from which the absolute value will be
computed.

Discussion

The absolute value function returns the magnitude of the passed value. It is primarily useful for signed
numeric types such as Si ngl e, | nt eger and Long. Unsigned parameter values will be returned
unchanged.

The type of the return value will be the same as the type of the parameter provided.

Example

Dmi as Integer, j as |Integer
i = -45

j = Abs(i) ' result is 45

15

AcCO0S

Type Function returning Single

Invocation Acos(arg)

Parameter Method Type Description
arg ByVal Single The value from which the arc cosine will be computed.
Discussion

The arc cosine function is the inverse of the cosine function. The return value will be the angle,
expressed in radians, whose cosine corresponds to the passed value. The type of the return value will be
Si ngl e and the value will range from 0.0 to . If the argument is greater than 1.0 or less than —1.0, the
result will be undefined.

Example

Dimval as Single, theta as Single

val = 0.5
theta = Acos(val) 'the result will be approximtely 1.0472.
See Also Cos, DegToRad, RadToDeg

16

ADCtoCom1l

Type Subroutine

Invocation ADCtoComl1(pin, rate)

Parameter Method Type Description

pin ByVal Byte The pin number from which analog readings will be taken.
Valid pins are those corresponding to PortA, pins 13 to 20.
rate ByVal intl6 The rate at which conversions will be performed. The value is

the number of conversions per second and may range from 28
to 11000 samples per second.

Discussion

Calling this subroutine causes a continuous series of analog-to-digital conversions to be performed on the
signal appearing at the specified pin. Each 8-bit digital result is automatically sent out the Com1 serial
port. Before starting the conversions, the baud rate of Com1 is set to 115,200. The specified pin is
automatically set to the proper state for A/D conversion so no additional setup is required prior to use.
The conversion stream will continue until ADCToConil() is called again with the pi n parameter set to
zero (the r at e parameter being meaningless in this case).

The analog input range is approximately 0.25 to 0.75 times Vcc (1.25 volts to 3.75 volts when running on
5 volts) and the resulting digital range is 0 to 255. Analog input levels below the low end of the range and
above the high end of the range will produce the low and high digital values, respectively.

Note that the subroutine ComLToDAC() is designed to receive the data stream generated by this
Subroutine.

For best accuracy, state changes on other pins of PortA should be avoided during the conversion
process.

Resource Usage

This subroutine uses the processor’'s A/D converter, Com1 and the I/O Timer. No other use of these
resources should be attempted while the conversion is active. For native code devices, the following

ISRs are required.

ISRs Required

Underlying CPU ISR Name

mega644pP Ti mer 1_ConpA
megal28l Ti mer 4_ConpA
megal280 Ti mer 4_ConpA

Example

' Begin the conversion stream on pin 12 at 500 sanples per second
Call ADCtoComil(12, 500)

Stop the conversion process after two ninutes
Call Delay(120.0)
Call ADCtoContl(0, 0)

See Also ComltoDAC

17

18

ASC

Type Function returning Byte

Invocation Asc(str)
Asc(str, index)

Parameter Method Type Description
str ByVal String The string from which a character will be returned.
index ByVal int8/16 The 1-based position in the string from which the character

will be returned.

Discussion
This function returns the ASCII character code of the character at the position of the string that is

specified. If the second parameter is missing, position 1 is assumed. Note that if the index is less than 1
or larger than the number of characters in the string the return value will be zero.

Example

Dims as String
Dimb as Byte

s
b

" Howdy"
Asc(s)

After execution, the variable b will have the value of 72 (48 hex), the character code for H.

Compatibility

BasicX does not support the presence of the second parameter.

See Also Chr

19

Asin

Type Function returning Single

Invocation Asin(arg)

Parameter Method Type Description
arg ByVal Single The value from which the arc sine will be computed.
Discussion

The arc sine function is the inverse of the sine function. The return value will be the angle, expressed in
radians, whose sine corresponds to the passed value. The type of the return value will be Si ngl e and
the value will range from -1/2 to /2. If the argument is greater than 1.0 or less than —1.0, the result will
be undefined.

Example

Dimval as Single, theta as Single

val = 0.5
theta = Asin(val) " result is approxi mtely 0.5236
See Also Sin, DegToRad, RadToDeg

20

Atn

Type Function returning Single

Invocation Atn(arg)

Parameter Method Type Description
arg ByVal Single The value from which the arc tangent will be computed.
Discussion

The arc tangent function is the inverse of the tangent function. The return value will be the angle,
expressed in radians, whose tangent corresponds to the passed value. The return value will be of type
Si ngl e and the value will range from - 1/2 to /2.

Example

Dimval as Single, theta as Single

val = 0.5
theta = Atn(val) ' result is approximtely 0.4636
See Also Atn2, DegToRad, RadToDeg

21

Atn2

Type Function returning Single

Invocation Atn2(y, x)

Parameter Method Type Description
y ByVal Single y coordinate.
X ByVal Single x coordinate.
Discussion

This function computes the principal value of the arc tangent of y/ X, using the signs of both arguments to
determine the quadrant of the return value. The return value will be the angle, expressed in radians, from
the positive x-axis to the line connecting the origin and the given point. The type of the return value will be
Si ngl e and the value will range from -1t to . If X is zero, the result is undefined unless y is also zero in

which case 0.0 will be returned.

Example

Dimx as Single, y as Single, theta as Single
x =1.0

y =-1.0

theta = Atn2(y, Xx) " result is -0.7854
Compatibility

This function is not available in BasicX compatibility mode.

See Also Atn, DegToRad, RadToDeg

22

BitCopy

Type Subroutine

Invocation BitCopy(destAddr, destBitOfst, srcAddr, srcBitOfst, bitCount)

Parameter Method Type Description

dstAddr ByVal integral The address to which to begin copying.
dstBitOfst ByVal integral The bit offset to which to begin copying.
srcAddr ByVal integral The address from which to begin copying.

srcBitOfst ByVal integral The bit offset from which to begin copying.
bitCount ByVal integral The number of bits to copy.

Discussion

This subroutine can be used to copy an arbitrary number of bits from one location in RAM to another.
The copy operation may begin and/or end in the middle of a byte if desired. An overlapping copy (when
the destination is in the midst of the data being copied) is handled correctly so that the data to be copied
is not overwritten.

For the purposes of this subroutine, RAM considered a sequence of bits with the least significant bits of
each byte preceding the more significant bits. This is the same model of RAM that is utilized by

GetBit () and Put Bi t (). The least significant bit of a byte is at offset zero and the most significant bit
is at offset 7.

Note that the bit offsets specified for the second and fourth parameters may have values greater than 7.
If a bit offset greater than 7 is given, the corresponding address component is adjusted internally to give
the same effect. For example, if an address of 200 and a bit offset of 19 are specified, these are
converted internally to 202 and 3, respectively.

All six parameters are converted internally to Unsi gnedlI nt eger .

Caution

This subroutine should be used with care because it is possible to overwrite important data on the stack
or other areas of memory which may cause your program to malfunction.

Compatibility

This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-

24). Moreover, it is not available in BasicX compatibility mode.

See Also MemCopy, MemSet

23

BlockMove

Type Subroutine

Invocation BlockMove(count, source, destination)

Parameter Method Type Description

count ByVal integral The number of bytes to copy.

source ByVal integral The address from which to begin copying.
destination ByVal integral The address to which to begin copying.
Discussion

This subroutine is provided for compatibility with BasicX. The more aptly named MemCopy () should be

used by new applications. An overlapping copy (when the destination is in the midst of the data being
copied) is handled correctly so that the data to be copied is not overwritten.

Compatibility
With firmware versions prior to v1.1.0 an overlapping copy is not handled correctly nor is it handled

correctly in BasicX. A BasicX application that relies on the incorrect handling will, therefore, not work as
expected when run on ZX processors.

See Also BitCopy, MemCopy

24

BusRead

Type Subroutine

Invocation BusRead(addr, data, count)
BusRead(addr, data, count, delta)

Parameter Method Type Description

addr ByVal integral The bus address at which to begin reading.

data ByRef anyType A buffer to receive the data read.

count ByVal integral The number of bytes to read.

delta ByVal integral The amount by which the address should be changed after

each byte is read.

Discussion

For ZX models that support external RAM (e.g. ZX-1281), if the external RAM interface is enabled and a
bus has not been defined using DefineBus(), then the external RAM interface is used for the read
operation. In this case, the full 16 bits of the specified address are used and the delta parameter is
interpreted as a signed 8-bit value that is sign-extended before adding it to the address with each
iteration.

For ZX models that do not support external RAM or if the external RAM interface is not enabled, this
routine performs a series of read operations on the bus previously defined with the DefineBus() call. This
is called the “bit bang” mode. For each read cycle, the low 8-bits of the address is output on the
previously specified port and then the ALE pin is strobed (high, then back low). Next, the port is made an
input and the RD pin is set low, data is read via the PIN register corresponding to the port, and the RD pin
is set back high again. The data value read is stored in the buffer, the specified delta is added to the 8-bit
bus address and the cycle is repeated until the specified number of bytes has been read.

It is important to remember that in the bit bang mode only 8 bits of the address are used. Depending on
the values of the addr, count and del t a parameters, the effective address may wrap around to zero.

For example, with del t a=1 specifying a count parameter larger than (256 — LoByte(addr)) will
result in the effective address wrapping around to zero.

In either mode, if the optional del t a parameter is not specified, the value of 1 is assumed. Specifying
the delta as zero will result in multiple reads from the same address. A delta of —1 or &Hf f will result in
the address being decremented after each read.

Example

Dimdata(l to 20) as Byte

Call DefineBus(Port.A C O, C1, C2)

Call BusRead(0, data, SizeO(data))

Compatibility

This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-

24). Moreover, it is not available in BasicX compatibility mode.

See Also BusWrite, DefineBus

25

BusWrite

Type Subroutine

Invocation BusWrite(addr, data, count)
BusWrite(addr, data, count, delta)

Parameter Method Type Description

addr ByVal integral The bus address at which to begin writing.

data ByRef anyType The data to be written.

count ByVal integral The number of bytes to write.

delta ByVal integral The amount by which the address should be changed after

each byte is written.

Discussion

For ZX models that support external RAM (e.g. ZX-1281), if the external RAM interface is enabled and
bus has not been defined using DefineBus(), then the external RAM interface is used for the write
operation. In this case, the full 16 bits of the specified address are used and the delta parameter is
interpreted as a signed 8-bit value that is sign-extended before adding it to the address with each
iteration.

For ZX models that do not support external RAM or if the external RAM interface is not enabled, this
routine performs a series of write operations on the bus previously defined with the DefineBus() call. This
is called the “bit bang” mode. For each write cycle, the low 8-bits of the address is output on the
previously specified port and then the ALE pin is strobed (high, then back low). Then, the next data value
to be written is output on the port and the WR pin is strobed (low then back high). Finally, the specified
delta is added to the bus address and the cycle is repeated until the specified number of bytes has been
written.

It is important to remember that in the bit bang mode only 8 bits of the address are used. Depending on
the values of the addr, count and del t a parameters, the effective address may wrap around to zero.

For example, with del t a=1 specifying a count parameter larger than (256 — LoByte(addr)) will
result in the effective address wrapping around to zero.

In either mode, if the optional del t a parameter is not specified, the value of 1 is assumed. Specifying
the delta as zero will result in multiple writes to the same address. A delta of —1 or &Hf f will result in the
address being decremented after each write.

Example

Dimdata(l to 20) as Byte

Call DefineBus(Port.A C O, C1, C2)

Call BusWite(0O, data, SizeO (data))

Compatibility

This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-

24). Moreover, it is not available in BasicX compatibility mode.

See Also BusRead, DefineBus

26

CallTask

Type Special Purpose

Invocation CallTask taskName, taskStack
CallTask taskName, taskStack, taskStackSize
CallTask taskName(parameterList), taskStack
CallTask taskName(parameterList), taskStack, taskStackSize

Parameter Method Type Description

taskName ByVal identifier The name of the task to invoke.

parameterList varies varies Zero or more parameters to be passed to the task,
separated by commas.

taskStack ByRef array of Byte The stack for the task (see discussion)

taskStackSize ByVal integral The size of the stack.

Discussion

This construct is used to prepare a task for running; the task doesn’t actually execute until its turn comes
up in the normal task rotation. In the first and second cases, the t askNane given must be the name of a
user-defined subroutine that takes no parameters. In the third and fourth cases, the t askNane given
must be a user-defined subroutine that takes a number of parameters whose type and number match that
of the supplied parameter list. The subroutine may be public or private but if it is private it must exist in the
same module as the CallTask invocation that refers to it.

The t askSt ack may be a Byte array, typically defined at the module level, that contains a sufficient
amount of space for the task’s stack needs. The array can be public or private but if it is private it must
exist in the same module as the CallTask invocation that refers to it. Alternately, the stack for a task may
be specified by giving its address as an integral expression. In this case, it is usually also advisable to
specify the size of the stack since the compiler cannot deduce the size. A task must have exclusive use
of the memory dedicated to its task stack. A particular task stack may be used by more than one task but
one task must terminate before the next task can re-use the task stack.

If a task is passed parameters when it is invoked, it is advisable that those parameters be passed ByVal
because the lifetime of the task may exceed the lifetime of the routine from which the task was invoked. If
parameters are passed ByRef (explicitly or implicitly), the compiler will issue a warning. Also, certain
types of expressions (notably, those involving user-defined functions that return String types) may not be
used as parameter values for task invocation because they require the creation of temporary variable
space on the stack during evaluation. The compiler will issue an error message when it detects such
situations. This problem can be rectified by manually creating a variable (preferably at the module level)
to hold the parameter value.

For native mode devices (e.g. ZX-24n), the task stack size must either be explicitly specified or it must be
determinable by the compiler from the size of the task stack array. The compiler will issue an error
message if it cannot determine the size of the task stack.

Please read the section on multi-tasking in the ZBasic Reference Manual for more details, including
information about how to determine the proper task stack size.

Example 1

Dim taskStack(1l to 50) as Byte

Sub Mai n()
Cal | Task MyTask, taskStack
Do

Debug. Print "Hello from Min"
Call Delay(1.0)

27

Loop
End Sub

Sub MyTask()
Do

Debug. Print "Hello from MyTask"
Call Del ay(2.0)
Loop
End Sub

Example 2
DimtaskStack(1l to 50) as Byte

Sub Mai n()
Cal | Task MyTask(2.0), taskStack
Do
Debug. Print "Hello from Main"
Call Delay(1.0)
Loop
End Sub

Sub MyTask(ByVal taskDelay as Single)
Do
Debug. Print "Hello from MyTask"
Cal | Del ay(taskDel ay)
Loop
End Sub

Example 3
DimtaskStack(1l to 50) as Byte

Sub Mai n()
Di m st kAddr as Unsi gnedl nt eger
Di m stkSi ze as | nteger

st kAddr t askSt ack. Dat aAddr ess
stkSi ze Si zeOr (t askSt ack)
Cal | Task MyTask(2.0), stkAddr, stkSize
Do
Debug. Print "Hello from Main"
Call Delay(1.0)
Loop
End Sub

Sub MyTask(ByVal taskDelay as Single)
Do
Debug. Print "Hello from MyTask"
Cal | Del ay(taskDel ay)
Loop
End Sub

Compatibility
In BasicX compatibility mode, the task name must be enclosed in quotes (i.e. so that it appears to be a

string). Also, task parameters, specifying the task stack by address, and specifying the task stack size
are not supported in BasicX compatibility mode.

28

CBit

Type Function returning Bit

Invocation CBit(arg)

Parameter Method Type Description
arg ByVal integral or Boolean The value to convert to a Bit value.
Discussion

This function converts a numeric or Boolean value to a Bit value. In all cases, the result will be the least
significant bit of the passed value without regard to its type.

Example
Di m pinval as Bit

pi nval = CBit(GetPin(12))

Compatibility

This function is not available in BasicX compatibility mode.

29

CBool

Type Function returning Boolean

Invocation CBool(arg)

Parameter Method Type Description
arg ByVal Byte The value to convert to a Boolean value.

Discussion

This function converts a Byte value to a Boolean value. If the byte has the value 0 the result will be
False, otherwise it will be True.

Example

Dim pi nH as Bool ean

pi nH = CBool (Get Pi n(12))

30

CByte

Type Function returning Byte

Invocation CByte(arg)

Parameter Method Type Description

arg ByVal numeric or Enum The value to convert to Byte.
Discussion

This function converts any numeric or enumeration value to a Byte value. See the table below for details
of the conversion.

Input Type Result

Bool ean Returns the byte value of the Boolean data item: O or 255.

Byt e No effect, the value is as supplied.

| nt eger Returns the low byte of the value provided. However, if the supplied

value is negative or greater than 255, the returned value will be 255.

Unsi gnedl nt eger Returns the low byte of the value provided. However, if the supplied
value is greater than 255, the returned value will be 255.

Enum Returns the low byte of the value provided. However, if the supplied
value is greater than 255, the returned value will be 255.

Long Returns the low byte of the value provided. However, if the supplied
value is negative or greater than 255, the returned value will be 255.

Unsi gnedLong Returns the low byte of the value provided. However, if the supplied
value is greater than 255, the returned value will be 255.

Si ngl e The supplied value is converted to a Long value (signed 32-bit integer),

rounded to the nearest integer. If the fractional part is exactly 0.5, the
resulting integer will be even. This is known as “statistical rounding”. If
the resulting integer value is negative or larger than 255, the result will
be 255. Otherwise, the result will be the integral value.

String The result is the numeric value of the characters in the string, ignoring
leading space and tab characters. The value string may begin with a
plus or minus sign and an optional radix indicator (&H for hexadecimal,
&0 for octal, &B or &X for binary, all case insensitive). The conversion
is terminated upon reaching the end of the string or encountering the
first character that is not valid for the indicated radix.

Compatibility

In BasicX, calling CByt e() with an Unsi gnedl nt eger argument returns the low byte of the value. This
behavior is inconsistent with the other type conversions. This implementation attempts to make them
consistent.

31

CByteArray

Type Function returning a reference to a Byte array

Invocation CByteArray(addr)

Parameter Method Type Description
addr ByVal int16 The address to be converted to a reference to a Byte array.
Discussion

This special function is useful when you have an integral value that you know to be the address of a Byte
array and you want to pass it to a subroutine or function that requires a Byte array parameter. The
example below shows it being used to determine the number of bytes of data available in the system
input queue.

Example

Dim cnt as |nteger
cnt = Get QueueCount (CByt eArray(Regi st er. RxQueue))

See Also StatusTask

32

Ceiling

Type Function returning Single

Invocation Ceiling(arg)

Parameter Method Type Description
arg ByVal Single The value of which to compute the ceiling.

Discussion

This function returns a Single value that is the smallest integer that is greater than or equal to the
supplied value, effectively rounding up to the nearest integer.

Example

Dimceil as Single

ceil = Ceiling(1.5) " result is 2.0
ceil = Ceiling(-1.5) " result is -1.0
Compatibility

This function is not available in BasicX compatibility mode.

See Also Floor, Fraction

33

Chr

Type Function returning String

Invocation Chr(arg)

Parameter Method Type Description

arg ByVal integral The character code to place in the string.
Discussion

This function returns a string containing a single character having the value of the supplied parameter. If
the parameter is a multi-byte type such as Integer or Long the least significant byte of the value is used
and the remaining bytes are ignored.

Tables of ASCII character values may be found in many places on the Internet. A search for “ASCII
table” or “ASCII chart” will produce many results.

Example

Dims as String
s = Chr(33)

After execution, s will be "! " because 33 is the decimal code for the exclamation mark.

See Also Asc

34

Cint

Type Function returning Integer

Invocation Cint(arg)

Parameter Method Type Description

arg ByVal numeric or Enum The value to convert to Integer.
Discussion

This function converts any numeric or enumeration value to an Integer value. See the table below for
details of the conversion.

Input Type Result

Byt e, Bool ean High byte zero, low byte as supplied.

I nt eger No effect, the value is as supplied.

Unsi gnedl nt eger Value bits are the same as supplied, although interpreted
as a signed value.

Enum The resulting value is the Enum member value.

Long The resulting value will be the low word of the supplied
value.

Unsi gnedLong The resulting value will be the low word of the supplied
value.

Si ngl e The supplied value is converted to signed 32-bit integer,

rounded to the nearest integer. If the fractional part is
exactly 0.5, the resulting integer will be even. This is
known as “statistical rounding”. If the resulting integer is
larger than will fit in 16-bits, the result is undefined.

String The result is the numeric value of the characters in the
string, ignoring leading space and tab characters. The
value string may begin with a plus or minus sign and an
optional radix indicator (&H for hexadecimal, &O for octal,
&B or &X for binary, all case insensitive). The conversion
is terminated upon reaching the end of the string or
encountering the first character that is not valid for the
indicated radix.

Example
Dimi as I|nteger

Cint(2.5) " result is 2
Cint(1.5) " result is 2

35

ClearQueue

Type Subroutine

Invocation ClearQueue(queue)

Parameter Method Type Description

gqueue ByRef array of Byte The queue to be cleared.
Discussion

This routine modifies the tracking information contained in the queue data structure to indicate that the
queue is empty. If the queue is already empty, this has no effect. If there are characters in the queue,
they will be discarded.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details.

Example

DiminQueue(l to 40) as Byte

Call OpenQueue(i nQueue, SizeO (i nQueue))

Call Put QueueStr (i nQueue, "Hello")

Call d ear Queue(i nQueue)

After the call to ClearQueue() the queue will no longer contain the characters that were added.

Compatibility

BasicX allows any type for the first parameter. This implementation requires that it be an array of Byt e.

36

CLng

Type Function returning Long

Invocation CLng(arg)

Parameter Method Type Description

arg ByVal numeric or Enum The value to convert to Long.
Discussion

This function converts any numeric or enumeration value to a Long value. See the table below for details
of the conversion.

Input Type Result
Byt e, Bool ean High 3 bytes zero, low byte as supplied.
I nt eger High word will be all ones if the supplied value is negative, zero

otherwise. Low word as supplied.
Unsi gnedl nt eger High word zero, low word as supplied.

Enum The resulting value is the Enum member value.

Long No effect, the value is as supplied.

Unsi gnedLong Value bits are the same as supplied, although interpreted as a signed
value.

Singl e The supplied value is converted to a signed 32-bit integer, rounded to

the nearest integer. If the fractional part is exactly 0.5, the resulting
integer will be even. This is known as “statistical rounding”. If the
magnitude of the supplied value is too large to be represented in 32 bits,
the result is undefined.

String The result is the numeric value of the characters in the string, ignoring
leading space and tab characters. The value string may begin with a
plus or minus sign and an optional radix indicator (&H for hexadecimal,
&0 for octal, &B or &X for binary, all case insensitive). The conversion
is terminated upon reaching the end of the string or encountering the
first character that is not valid for the indicated radix.

Example
Dim | as Long

CLng(2.5) "result is 2
CLng(1.5) " result is 2

37

CloseCom

Type Subroutine

Invocation CloseCom(channel, inQueue, outQueue)

Parameter Method Type Description

channel ByVal Byte The serial channel to close.

inQueue ByRef array of Byte The input queue associated with the channel.

outQueue ByRef array of Byte The output queue associated with the channel.

Discussion

This routine shuts down the specified serial channel. All communication is terminated even if there are
still characters in the output queue that have not yet been sent. This call does not clear the queues. If
that is a requirement, calls to Cl ear Queue() will need to be made. Alternately, you may want to use the
value returned by St at usCom() to wait for all queued characters to be transmitted beforing invoking

Cl oseCom().

Invoking this subroutine for Com1 (channel = 1) does not actually close the Com1 channel. Rather,
doing so causes Coml to revert to the default speed (19.2K baud) and to using the default I/O queues.

If the specified serial channel is not open or if an invalid channel number is given the call has no effect. If
the channel being closed is the only one of the software-based channels (Com3-Com6) that is open, the

Serial Timer will be turned off and the corresponding timer busy flag will be set to False indicating that the
Serial Timer is available for other uses.

See Also DefineCom, OpenCom, StatusCom

38

Closel2C

Type Subroutine

Invocation Closel2C(channel)

Parameter Method Type Description

channel ByVval Byte The 12C channel number (0-4).
Discussion

This subroutine closes an 12C channel. For the hardware [2C channel, it disables the on-board 12C
controller allowing the hardware 12C pins to be used for other purposes. For software 12C channels it has
no effect.

Compatibility

This subroutine is not available in BasicX compatibility mode.

See Also Openl2C

39

ClosePWM

Type Subroutine

Invocation ClosePWM(channel)

Parameter Method Type Description

channel ByVval Byte The PWM channel to close.
Discussion

This subroutine terminates the PWM signal generation on the specified channel and all other PWM
channels associated with the same timer. The resulting state of the output pins for the affected channels
is indeterminate. If your application requires a specific output state, it is recommended that you call

Put Pi n() to set the desired state prior to calling Cl osePWW) .

A side effect of a successful Cl osePWM) call is that the timer busy flag for the associated timer (e.g.
Regi st er. Ti mer 1Busy) will be set to Fal se indicating that the timer may be used for other purposes.

Example

Call d osePW 1) ' terminate PWM on channel 1 and 2

Compatibility

This subroutine is not available in BasicX compatibility mode.

See Also OpenPWM, PWM

40

CloseWatchDog

Type Subroutine
Invocation CloseWatchDog()
Discussion

This subroutine disables the watchdog timer.

Compatibility

This subroutine is not available in BasicX compatibility mode.

See Also OpenWatchDog, WatchDog

41

CloseX10

Type Subroutine

Invocation CloseX10(channel, inQueue, outQueue)

Parameter Method Type Description

channel ByVal Byte The X-10 channel to close.

inQueue ByRef array of Byte The input queue associated with the channel.

outQueue ByRef array of Byte The output queue associated with the channel.

Discussion

This routine shuts down the specified X-10 communication channel. All communication is terminated
even if there are still data in the output queue that have not yet been sent. This call does not clear the
queues. If that is a requirement, calls to Cl ear Queue() will need to be made.

If the specified X-10 channel is not open or if an invalid channel number is given the call has no effect.

The i nQueue and out Queue parameters are currently not used but are present for congruency with
Cl oseCom() . Zero values may be used for either or both parameters.

Resource Usage

The X-10 communication requires the use of INTO. While any X-10 channel is open, a task awaiting an
interrupt on the Int0 pin will be suspended indefinitely. Once all X-10 channels are closed, Int0 will
function normally again.

Compatibility

This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-

24). Moreover, it is not available in BasicX compatibility mode.

See Also DefineX10, OpenX10, StatusX10

42

CNibble

Type Function returning Nibble

Invocation CNibble(arg)

Parameter Method Type Description
arg ByVal integral or Boolean The value to convert to a Nibble value.
Discussion

This function converts a numeric or Boolean value to a Nibble value. If the passed value is a Bit or
Boolean value the three most significant bits of the return value will be zero. In all other cases, the result
will be the four least significant bits of the passed value without regard to its type.

Example

Dim nVal as Nibble

nVal = CNi bbl e(Regi ster. PortC)

Compatibility

This function is not available in BasicX compatibility mode.

43

ComltoDAC

Type Subroutine

Invocation Com1toDAC(pin)

Parameter Method Type Description
pin ByVal Byte The pin number on which the analog voltage will be re-created.

Discussion

Calling this subroutine prepares Coml to receive a continuous stream of 8-bit values from an external
source. The baud rate is automatically set 115,200. When each value is received, the value is output as
an analog voltage on the specified pin. The resulting analog voltage will range from near 0 volts
corresponding to the received value of 0 to near the processor voltage (usually +5 volts) corresponding to
the received value of 255. The method used to create the analog voltage is similar to that used for

Put DAC() and the signal will require some filtering. See the description of Put DAC() for more details.
The output pin is updated at a fixed rate of 11,000 times per second.

This routine returns immediately after setting up the conversion process. The conversion process will be
terminated if Comlt oDAC() is called again with a parameter of zero. Also, if data is not received for
approximately 200 cycles, the conversion process will be automatically terminated.

Note that the subroutine ADCt oConil() is designed to produce the data stream to be received by this
subroutine.
Resource Usage

This subroutine uses Com1 and the I/O Timer. No other use of these resources should be attempted
while the reception is active. For native code devices, the following ISRs are automatically loaded.

ISRs Required

Underlying CPU ISR Name

mega644pP Ti mer 1_ConpA
megalz8l Ti mer 4_ConpA
megalz80 Ti mer 4_ConpA

See Also ADCtoCom1

44

ComChannels

Type Subroutine

Invocation ComChannels(count, maxSpeed)

Parameter Method Type Description

count ByVal Byte The total desired number of software-derived serial channels.
maxSpeed ByVal int8/16 The desired maximum baud rate to be supported.
Discussion

In addition to the serial channel implemented in hardware on the processor (Com1l), the system can
support up to four additional serial communication channels that are implemented in the system software.
The software-based serial channels are numbered Com3 through Com6. However, by default, only one
additional channel, Com3, is supported. If you want to use serial channels 4 through 6 you must call this
subroutine first to specify the maximum number (up to 4) that you want to have available. This subroutine
must be called only when there are no open software-based serial channels (COM3 through COM®6). If it
is called when one or more channels are already open, it will have no effect.

After ComChannels() has been invoked, the serial channels that will be available depends on the value
specified by the count parameter. If the value 2 is specified, for example, channels Com3 and Com4 will
be available. If the maximum value of 4 is specified, then serial channels 3, 4, 5 and 6 will be available.
Once the number of software-based serial channels has been established you may then use
DefineCom(), OpenCom(), and CloseCom() to manage the available channels by specifying the
appropriate channel number in those calls.

In addition to specifying the total number of software-based serial channels that you want, you must also
specify the maximum baud rate that you wish to utilize. The supported rates are 300, 600, 1200, 2400,
4800, 9600 and 19,200 baud but see below for additional discussion about the maximum baud.

Because the COM3 to COM6 serial channels are implemented in software, when one or more of the
channels is open there will be a certain amount of processing overhead that will reduce the speed at
which program instructions will be executed. Moreover, the processing overhead is higher when
supporting higher baud rates as compared to lower baud rates and the overhead is higher when
supporting a larger number of channels. It is prudent, therefore, to choose the lowest baud rate and
lowest number of channels that is practical for your circumstances.

Also note that when supporting two or more channels, there is a small possibility that incoming characters
might not be properly recognized at the highest rate. The probability of not being able to properly
synchronize on the incoming character’s start bit increases with each additional channel that is supported.

For this reason, it is recommended that the maximum baud rate be limited to 9600 when configured for 2
or more channels.

Resource Usage

The software-implemented serial channels utilize the Serial Timer for the bit rate timing. No other use of
the Serial Timer should be attempted when serial channels 3-6 are open.

Example

Dmiqg4(l to 20) as Byte
Dimog4(l to 20) as Byte

Call ContChannel s(4, 4800)

45

Cal | DefineCom(6, 12, 13, &H80)
Call OpenCom(6, 4800, iq4, oqg4)

Compatibility

This routine is not available in BasicX compatibility mode.

See Also DefineCom, CloseCom, OpenCom, StatusCom

46

Console.Read

Type Function returning Byte
Invocation Console.Read()
Discussion

This function can be invoked to retrieve a character from the input queue associated with Com1. If the
value of Regi st er. Consol e. Echo is Tr ue, the character will automatically be sent back out via the
system output queue. When this function is called it will not return until a character is available.
However, other tasks will continue to execute. You may wish to use the value returned by

Regi st er. RxQueue to find out if there are characters available before calling it. See the example
below.

Example

Dim b as Byte
b = Console.Read() ' this will wait until a character is available

I f (GetQueueCount (CByteArray(Regi ster. RxQueue)) > 0) Then

b = Console.Read() ' read the next avail able character
End |f
Compatibility

This function is not available in BasicX compatibility mode.

See Also Console.ReadLine, Console.Write, Console.WriteLine

47

Console.ReadLine

Type Function returning String
Invocation Console.ReadLine()
Discussion

This function can be invoked to retrieve a sequence of characters from the system input queue
terminated by an end-of-line character. If the value of Regi st er. Consol e. Echo is Tr ue, each
character received will automatically be sent back out via the system output queue. When this function is
called it will not return until an end-of-line character is received. However, other tasks will continue to
execute. The end-of-line character is line feed (&H0a) by default but you may change it using

Regi st er. Consol e. EQL.
While the characters of the line are being read, if a backspace character is received (&H08) the most

recently received character will be deleted from the internal buffer. Additional backspace characters will
each remove another character from the buffer until it is empty. If a carriage return is received (&H0d) it

will be ignored unless Regi st er. Consol e. EQL is a carriage return.

The end-of-line character is not included in the returned strin% and the maximum length of the string is
255 characters. Additional characters received after the 255" character will be discarded while awaiting
the end-of-line character.

Example

Dms as String

s = Consol e. ReadLi ne()

Compatibility

This function is not available in BasicX compatibility mode.

See Also Console.Read, Console.Write, Console.WriteLine

48

Console.Write

Type Special Purpose

Invocation Console.Write(arg)

Parameter Method Type Description

arg ByVal String A string to send to Com1.
Discussion

Console.Write is neither a subroutine nor a function. It has more in common with ZBasic statements but it
is described here for ease of reference. This special purpose method is useful for outputting debugging
information and other data to Com1. Note that no carriage return/new line is output after the string.

When this method is invoked, execution of the current task will not continue and no other task will be
allowed to run until the string’s characters have been transferred to the system output queue. The

Debug.Print page contains some example code that illustrates a way to mitigate the latency that results
from this implementation detail.

In contrast to other System Library routines that copy data to a queue, the string length is not limited to
the system output queue length.

Example

Console.Wite("Hello, world! ")
Console.Wite("The value is " & CStr(val))

This example uses the concatenation operator to produce a single string that is passed to the method.

See Also Debug.Print, Console.Read, Console.ReadLine, Console.WriteLine

49

Console.WriteLine

Type Special Purpose

Invocation Console.WriteLine(arg)

Parameter Method Type Description

arg ByVal String A string to send to Com1.
Discussion

Console.WriteLine is neither a subroutine nor a function. It has more in common with ZBasic statements
but it described here for ease of reference. This special purpose method is useful for outputting
debugging information and other data to Com1. Note that a carriage return/new line is always output
following the string.

When this method is invoked, execution of the current task will not continue and no other task will be
allowed to run until the string’s characters have been transferred to the system output queue. This caveat
applies separately to the string specified by the parameter and to the end-of-line sequence that is also
output. The Debug.Print page contains some example code that illustrates a way to mitigate the latency
that results from this implementation detail.

In contrast to other System Library routines that copy data to a queue, the string length is not limited to
the system output queue length.

Examples

Console. WiteLine("Hello, world!l ")

Consol e. WitelLine("The value is " & CStr(val))

The second example uses the concatenation operator to produce a single string that is passed to the

method.

See Also Debug.Print, Console.Read, Console.ReadLine, Console.Write

50

Cos

Type Function returning Single

Invocation Cos(arg)

Parameter Method Type Description

arg ByVal Single The angle, in radians, of which the cosine will be computed.
Discussion

The return value will be the cosine of the supplied value, ranging from —-1.0 to 1.0.

Example

Const pi as Single = 3.14159
Dimval as Single

val = Cos(pi) " result is -1.0

See Also Acos, DegToRad, RadToDeg

51

CountTransitions

Type Function returning Long
Invocation CountTransitions(pin, interval)
Parameter Method Type Description
pin ByVal Byte The pin on which logic transitions will be counted.
interval ByVal Single or The time interval specified in seconds or I/O Timer ticks
Long respectively, during which transitions will be counted. See the

discussion below for information on range and resolution.

Discussion

When called, this routine will begin counting logic transitions on the specified pin and will continue until
the specified interval has elapsed. During the counting process processor interrupts are disabled. This
strategy allows high precision in measuring the interval but has the drawback that other processes that
utilize interrupts will not function correctly. Among such affected processes are all serial communication
and multi-tasking. For this reason, the counting interval should be kept as short as possible. RTC ticks
that occur during the counting process are accumulated and the RTC is updated when the counting is
finished.

The specified pin, which you must configure to be an input before calling, is sampled at a fixed rate of
approximately 500KHz. The default resolution of the measurement interval is approximately 2.441y S with
a maximum interval length of 5.2 seconds. If thei nt er val parameter is specified using a Si ngl e value
the units are seconds, otherwise the units are I/O Timer ticks where each tick is approximately 2.441 S

(1/409.6KHz). You may modify the range and resolution of the measurement interval by modifying the
built-in variable Regi st er. Ti ner Speedl. See the special section on Timers for more details.

Resource Usage
This function uses the I/0O Timer and disables interrupts during the counting process. However, RTC ticks

are accumulated during the process and the RTC is updated upon completion.

Compatibility

In BasicX missed RTC ticks are not accounted for.

52

CPUSleep

Type Subroutine

Invocation CPUSIeep()

Discussion

This routine puts the processor into a special sleep mode in which activity and power consumption are
reduced. The nature of the sleep mode is controlled by certain bits in one of the CPU registers (see table
below). For more information about the sleep mode, consult the Atmel documentation for the ATmega
processor on your ZX device is based.

Register Containing the Sleep Mode Bits

ZX Model Register

ZX-24, ZX-40, ZX-44, ZX-24e Regi st er . MCUCR
ZX-24a, ZX-40a, ZX-44a, ZX-24ae Regi st er. SMCR
ZX-24p, ZX-40p, ZX-44p Regi st er. SMCR
ZX-24n, ZX-40n, ZX-44n Regi st er. SMCR
ZX-1281, ZX-1281n, ZX-1280, ZX-1280n, ZX-1281e Regi st er. SMCR
ZX-128e Regi st er . MCUCR

53

CRC16

Type Function returning Unsignedinteger

Invocation CRC16(data, count, crcPoly, crcinit, crcFlags)

Parameter Method Type Description

data ByRef anyType The data bytes to add to the CRC value.
count ByVal integral The number of bytes to process.

crcPoly ByVal Unsignedinteger The CRC polynomial to use.

crclnit ByVal Unsignedinteger The initial value of the CRC.

crcFlags ByVal integral Flag bits that control the CRC computation.
Discussion

This function computes the CRC value over a number of data bytes using a specified polynomial and
initial value. The values to use for the polynomial and the initial value depend on the style of CRC that
you need to generate. See the discussion below for further details. The f | ags parameter contains bits
that control aspects of the CRC computation as described in the table below.

Flag Values for the CRC Compuation
Constant Hex Binary Description
ZXCRCRef I n &HO1 xxxx xxx1 Each input data bytes will be “reflected”.
zxCRCRef Qut &HOZ2 xxxx Xx1x The final CRC value will be “reflected”.

The remaining bits are reserved for future use and should always be zero.

In this context, the term “reflection” refers to reversing the order of the bits in a data item so that the most
significant becomes the least significant and vice versa. For a multi-byte data item, the bits in each byte
are reversed and the order of the bytes is reversed as well.

Although this function will typically be used to compute the CRC value for an entire block of data at once,
it may also be used in a byte-by-byte or data burst mode. To do so, you would pass the computed CRC
value from the previous iteration as the initial value. Note, however, that you shouldn’t use the zxRef Qut
flag bit in this case. Rather, if you need reflected output you would perform the bit reversal on the final
CRC value when you reach the end of the data stream. You can reverse the bit order of a 16-bit value by
using the following code fragment.

crc = MkeWrd(FlipBits(H Byte(crc)), FlipBits(LoByte(crc)))

CRC algorithms can be described by a parametric model known as the RockSoft model (see
http://www.repairfaq.org/filipg/LINK/F_crc_v34.htmI#CRCV_005). This CRC implementation supports the
POLY, INIT, REFIN and REFOUT parameters of the model with WIDTH=16 and XOROUT=0. If

necessary, you can easily implement a non-zero XOROUT parameter by using the following code
fragment.

crc = crc Xor XorQutVal ue

The Rocksoft model parameters for commonly used CRC computations are given in the table below.

54

http://www.repairfaq.org/filipg/LINK/F_crc_v34.html

Rocksoft Model Parameters for Common CRC Algorithms
Parameter/Type CRC-16 CRC-CCITT ModBus CRC-32

W DTH 16 16 16 32

POLY &H8005 &H1021 &H8005 &H04c11db?7
INIT &H0000 EHfff f EHfff f QHFfffffff
REFI N True Fal se True True
REFOUT True Fal se True True
XOROUT &H0000 &HO000 &HO000 QHFfffffff
CHECK &Hbb3d &H29b1 &HAb37 &Hcbf 43926

The parameters are included in the table above for the CRC-32 algorithm but, of course, they must be
used with the CRC32() function. The CHECK value is the CRC result for the string of characters

"123456789".

Additional information on CRC calculations may be found in many places on the Internet. One useful site
that implements a CRC calculator is http://www.zorc.breitbandkatze.de/crc.html. If you don’t know the
parameters required for a particular CRC, you may be able to deduce the correct parameters by using the
calculator if you have a sample message and its CRC value. One of the variables available in the CRC
calculator on the web page mentioned is “direct” vs. “nondirect”. This implementation uses the “direct”
method.

Example
Dimdata(l to 20) as Byte
Dim crc as Unsi gnedl nt eger

" conmpute the CRC using the CRC-16 algorithm
crc = CRCl6(data, 10, &H8005, &HO000, zxCRCRefln O zxCRCRefCut)

Compatibility

This function is not available in BasicX compatibility mode. Also, on ZX models that are based on the
ATmega32 processor (e.g. the ZX-24) this function is implemented in “user code” (as opposed to being
part of the VM) and is consequently slower than on other ZX models.

See Also CRC32

55

http://www.zorc.breitbandkatze.de/crc.html

CRC32

Type Function returning UnsignedLong

Invocation CRC32(data, count, crcPoly, crcinit, crcFlags)

Parameter Method Type Description

data ByRef anyType The data bytes to add to the CRC value.
count ByVal integral The number of bytes to process.

crcPoly ByVal UnsignedLong The CRC polynomial to use.

crclnit ByVal UnsignedLong The initial value of the CRC.

crcFlags ByVal integral Flag bits that control the CRC computation.
Discussion

This function computes the CRC value over a number of data bytes using a specified polynomial and
initial value. The values to use for the polynomial and the initial value depend on the style of CRC that
you need to generate. The f | ags parameter contains bits that control aspects of the CRC computation
as described in the table below.

Flag Values for the CRC Compuation
Constant Hex Binary Description
zXCRCRef I n &HO1 xxxx xxx1 The input data bytes will be “reflected”.
zXCRCRef Qut &HO02 xxxx xx1x The final CRC will be “reflected”.

The remaining bits are reserved for future use and should always be zero.

Although this function will typically be used to compute the CRC value for an entire block of data at once,
it may also be used in a byte-by-byte or data burst mode. To do so, you would pass the computed CRC
value from the previous iteration as the initial value. Note, however, that you shouldn’t use the zxRef Qut
flag bit in this case. Rather, if you need reflected output you would perform the bit reversal on the final
CRC value when you reach the end of the data stream.

See the discussion of the CRC16() function for additional information.

Example

Dimdata(l to 20) as Byte

Dim crc as Unsi gnedLong

crc = Not CRC32(data, 10, &HO04cllidb7, &Hffffffff, zxCRCRefln O zxCRCRefQut)
Compatibility

This function is not available in BasicX compatibility mode. Also, on ZX models that are based on the

ATmega32 processor (e.g. the ZX-24) this function is implemented in “user code” (as opposed to being
part of the VM) and is consequently slower than on other ZX models.

See Also CRC16

56

CSng

Type Function returning Single

Invocation CSng(arg)

Parameter Method Type
arg ByVal numeric or Enum

Description
The value to convert to Single.

Discussion

This function converts any numeric or enumeration value to a Si ngl e value. For integral and Enum
types, the result will be the floating point approximation of the integral value. If a Si ngl e type parameter
is supplied, the result is identical to the parameter value. If a St ri ng type parameter is supplied, the
result will be the numeric value of the character string. The form of the character representation
supported is identical to that supported by Val ueS() .

Example

Dmb as Byte
Dmf as Single

b =21
f = CSng(b)
Compatibility

In BasicX, passing an Unsi gnedLong value larger than 2,147,483,647 erroneously generates a negative
Single result. This implementation handles Unsi gnedLong values correctly.

57

CStr

Type Function returning String

Invocation CStr(arg)

Parameter Method Type Description

arg ByVal any type The value to convert to String.
Discussion

This function converts any Boolean, numeric or enumeration value to a String value. See the table below
for details of the conversion.

Input Type Result

Bool ean The string " True” or " Fal se".

Byte, Bit, N bble A string containing decimal digits representing the
value.

I nt eger A string containing decimal digits representing the

value. If the value is negative, the string will begin
with a minus sign.

Unsi gnedl nt eger A string containing decimal digits representing the
value.

Enum A string containing decimal digits representing the
Enum member value.

Long A string containing decimal digits representing the

value. If the value is negative, the string will begin
with a minus sign.

Unsi gnedLong A string containing decimal digits representing the
value.
Si ngl e A string representing the value. Depending on the

value, the form may be standard decimal form with a
decimal point separating the whole and fractional
parts or it may be in “scientific notation” form. In some
cases, there will be no decimal point at all, e.g. with
values having no fractional part.

When converting Si ngl e values, some special cases are detected resulting in the strings shown in the
table below. See the function SngCl ass() for more information about the special cases.

Special Value Result
NaN Mk kN
*Infinity "& &
Denormalized value "H#H. 7"

Compatibility
In BasicX the special Si ngl e values are not handled properly.

See Also CStrHex, Fmt

58

CStrHex

Type Function returning String

Invocation CStrHex(arg)

Parameter Method Type Description

arg ByVal numeric The value to convert to a hexadecimal String.
Discussion

This function converts any Boolean, numeric or enumeration value to a String value. The content of the
string will be hexadecimal characters that represent the value of the bytes comprising the passed value.
The number of characters in the string varies depending on the type of the value passed. See the table

below.

Input Type Number of Characters

Bool ean, Bit, Ni bble, Byte 2

I nt eger, Unsignedl nteger, Enum 4

Long, UnsignedLong, Single 8
Compatibility

This function is not available in BasicX compatibility mode.

59

CType

Type Function returning an enumeration member

Invocation CType(value, enumType)

Parameter Method Type Description

value ByVal numeric or Enum The value to convert to an Enum member.
enumType ByVal Enum The name of the Enum type.

Discussion

This function converts any numeric or enumeration member value to an enumeration member. No
checking is done to confirm that the given value actually corresponds to one of the enumeration
members.

See the section on enumerations in the ZBasic Reference Manual for more information.

Example

Enum Col or
Red
G een
Bl ue

End Enum

Dim c as Col or

¢ = Clype(1, Color) " ¢ will have the value G een

60

CuUlint

Type Function returning Unsignedinteger

Invocation CUInt(arg)

Parameter Method Type Description

arg ByVal numeric or Enum The value to convert to Unsignedinteger.
Discussion

This function converts any numeric or enumeration value to an Unsignedinteger value. See the table
below for details of the conversion.

Input Type Result
Byt e, Bool ean High byte zero, low byte as supplied.
I nt eger Value bits are the same as supplied, although interpreted as an

unsigned value.
Unsi gnedl nt eger No effect, the value is as supplied.

Enum Resulting value is the Enum member value.

Long Resulting value is the low word of the supplied value.

Unsi gnedLong Resulting value is the low word of the supplied value.

Si ngl e The supplied value is converted to a signed 32-bit integer, rounded to

the nearest integer. If the fractional part is exactly 0.5, the resulting
integer will be even. This is known as “statistical rounding”. If the
resulting signed integer is negative or larger than 65535, the resultis
undefined. Otherwise, the result is the value of the integer.

String The result is the numeric value of the characters in the string, ignoring
leading space and tab characters. The value string may begin with a
plus or minus sign and an optional radix indicator (&H for hexadecimal,
&0 for octal, &B or &X for binary, all case insensitive). The conversion
is terminated upon reaching the end of the string or encountering the
first character that is not valid for the indicated radix.

Example

Di m u as Unsi gnedl nt eger

u = CUnt(2.5) "result is 2
u==0Cant(l.5 "result is 2
Compatibility

The ability to convert from Si ngl e is not supported in BasicX compatibility mode.

61

CULng

Type Function returning UnsignedLong

Invocation CULng(arg)

Parameter Method Type Description
arg ByVal numeric or Enum The value to convert to UnsignedLong.
Discussion

This function converts any numeric or enumeration value to an UnsignedLong value. See the table below
for details of the conversion.

Input Type Result

Byt e, Bool ean High 3 bytes zero, low byte as supplied.

I nt eger High word will be zero, low word as supplied.

Unsi gnedl nt eger High word will be zero, low word as supplied.

Enum High word zero, low word contains Enum member value.

Long Value bits are the same as supplied, although interpreted as an
unsigned value.

Unsi gnedLong No effect, the value is as supplied.

Si ngl e Supplied value converted to signed 32-bit integer, rounded to the

nearest integer. If the fractional part is exactly 0.5, the resulting
integer will be even. This is known as “statistical rounding”. If the
supplied value is negative or if it is too large to be represented in 32
bits, the result is undefined.

String The result is the numeric value of the characters in the string, ignoring
leading space and tab characters. The value string may begin with a
plus or minus sign and an optional radix indicator (&H for
hexadecimal, &0 for octal, &B or &X for binary, all case insensitive).
The conversion is terminated upon reaching the end of the string or
encountering the first character that is not valid for the indicated radix.

Example
Di m ul as UnsignedLong

ul
ul

CULng(2. 5) "result is 2
CULng(1.5) "result is 2

62

DACPIn

Type Subroutine

Invocation DACPiIn(pin, dacValue, dacAccumulator)

Parameter Method Type Description

pin ByVal Byte The pin to which the DAC signal will be output.

dacValue ByVal Byte The value representing the desired analog output. See the
discussion below.

dacAccumulator ByRef Byte A value used in the DAC process. See discussion below.

Discussion

This routine creates a digital approximation of an analog signal on the specified pin using a pseudo-PWM
technique. ZBasic supports this routine for backward compatibility. New applications should use
Put DAC() as it is more flexible. See the description of Put DAC() for more information.

Resource Usage

This routine disables interrupts for approximately 200y S during the generation process.

See Also PutDAC

63

Debug.Print

Type Special Purpose

Invocation Debug.Print stringList

Parameter Method Type Description

stringList ByVal String One or more strings or values to send out Com1.
Discussion

Debug.Print is neither a subroutine nor a function. It has more in common with ZBasic statements but it
described here for ease of reference. This special purpose method is useful for outputting debugging
information and other data to Com1. The arguments provided to the command consist of zero or more
strings or values each separated by a semicolon. If non-string values are supplied, they are converted to
strings automatically using the CStr() function. Unless the list ends with a semicolon, a carriage
return/new line will also be output after all of the strings have been output.

When this statement is invoked, execution of the current task will not continue and no other task will be
allowed to run until the string’s characters have been transferred to the system output queue. This caveat
applies independently to each string in the semicolon-separated list as well as to the end-of-line string, if
applicable. The latency-inducing effect described above can be mitigated by preparing a new output
queue that is sufficiently large such that there is always enough free space in the queue when this
method is invoked. See the example below.

In contrast to other System Library routines that copy data to a queue, the string length is not limited to
the system output queue length.
Examples

Debug. Print "Hello, world! ™"

This prints the given string followed by a carriage return/new line.

Debug. Print "The value is ";CStr(val);

This prints the string followed immediately by the string equivalent of the value. Note that since the
command ends with a semicolon, no carriage return/new line will be generated.

Dmiqg(l to 20) as Byte
Dimoq(1l to 100) as Byte

Call OpenQueue(iq, SizeO(iq))
Call OpenQueue(oq, SizeO(oq))
Call OpenConm(1l, 19200, iq, o0qQ)

This example code shows how to increase the size of the output queue in order to reduce latency. The
default input could be retained by replacing the last line above with the following line and deleting the
other lines that refer to the variable i q.

Call OpenCom(1l, 19200, CByteArray(Register.RxQueue), o0qQ)

See Also Console.Write, Console.WriteLine

64

DefineBus

Type Subroutine

Invocation DefineBus(port, alePin, rdPin, wrPin)

Parameter Method Type Description

port ByVal integral The port to use for address and data. PortA=0, PortB=1, etc.
alePin ByVal integral The pin to use for the address latch strobe.

rdPin ByVal integral The pin to use for the read data strobe.

wrPin ByVal integral The pin to use for the write data strobe.

Discussion

This subroutine is used to define the parameters to use for subsequent BusRead() and BusWrite()
operations. The port specified by the por t parameter is used both for outputting the address from which
to read/write and for reading/writing the data. The port is specified by giving a port index — PortA = 0,
PortB = 1, etc. You may use the built-in constants Port . A, Port . B, etc. to specify the port index. If all
the parameters are valid, the pin specified by the al ePi n parameter is set to output low while the pins
specified by the r dPi n and wr Pi n parameters are set to output high. If any of the provided parameters
is invalid, the bus will not be properly configured and subsequent calls to BusRead() or BusWite()
will return immediately with no effect.

The pin numbers specified for the al ePi n, r dPi n and wr Pi n parameters must all be different and none
of them should be in the port specified by the port parameter. If these conditions are violated, the result
is undefined.

Example

Call DefineBus(Port.A C 0O, C1, C2)

Compatibility

This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-

24). Moreover, it is not available in BasicX compatibility mode.

See Also BusRead, BusWrite

65

DefineCom

Type Subroutine

Invocation DefineCom(channel, rxPin, txPin, flags)
DefineCom(channel, rxPin, txPin, flags, stopBits)

Parameter Method Type Description

channel ByVal Byte The serial channel being defined.

rxPin ByVal Byte The pin which will serve as the receive line.
txPin ByVal Byte The pin which will serve as the transmit line.
flags ByVal Byte Configuration flags. See the discussion below.
stopBits ByVal Byte The desired number of stop bits.

Discussion

This routine configures a serial channel, preparing it to be opened using OpenCont() . If the specified
channel is already open, this routine does nothing. Likewise, there is no effect if the specified channel is
invalid (see the ContChannel s() routine) or if either of the r xPi n and t xPi n parameters are invalid or
both are zero. Note that either r xPi n or t xPi n may be zero, allowing you to define a transmit-only or
receive-only serial channel.

If the specified channel is a hardware UART (e.g. Com1), the r xPi n and t xPi n parmeters must both be
zero. Otherwise, if they are valid, the pins specified by r xPi n and t xPi n are automatically configured as
input and output, respectively.

The f | ags parameter contains several bit fields used to specify some of the details of the operation of
the serial channel.

Serial Channel Configuration Flag Values

Function Hex Value Bit Mask

Inverted Logic? &H80 1X XX XX XX
Non-inverted Logic &HOO OX XX XX XX
Ignore Parity Bit &H40 X1 XX XX XX
Even Parity &H30 XX 11 XX XX
Odd Parity &H20 XX 10 XX XX
No Parity &HOO XX 00 xx xx
7-bit Data &HO7 xx xx 01 11
8-bit Data &HO8 xx xx 10 00

1 Applicable only to software-based channels (3-6).
The remaining bits are currently undefined but may be employed in the future.

When Non-inverted Logic is selected, the idle state of the transmit line will be logic 1. When a character
transmission is begun, a “start bit” of logic zero will be sent for one bit time (the inverse of the baud rate).
Next the data bits are sent, each for one bit time, beginning with the least significant bit and continuing
through the eighth data bit or parity bit as the case may be. Finally, one or more “stop bits” of logic one
are sent, each for one bit time. With Inverted Logic, each of these elements is complemented — the idle
state of the transmit line is logic O.

Whether you should choose the Inverted or Non-inverted mode depends on the device that you intend to
communicate with and how many, if any, level converters exist between the two devices. Typically, if the
other device is capable of sending and receiving TTL-level serial data, you'll likely choose Non-inverted
Logic.

66

If the “Ignore Parity” flag is asserted, in 7-bit mode the most significant bit of each character received will
be zero and in 8-bit mode only one byte will be stored in the queue for each character received. If the
“Ignore Parity” bit is not asserted, in 7-bit mode the MSB will contain the received parity bit and in 8-bit
mode a second byte containing the parity bit will be stored in the queue for each character received. The
Pari t yCheck() function is useful for checking the parity of a received character.

If the optional st opBi t s parameter is not specified, one stop bit is transmitted for each character sent.
Otherwise, the specified number of stop bits is transmitted. The allowable range for st opBi ts is 1 to
240. If a value outside this range is specified, the default of 1 stop bit will be used. The ability to specify
two or more stop bits is useful for slowing down the transmission of data in cases where the receiver
needs additional time to process received data.

Note that a pullup resistor (Non-inverted mode) or a pulldown resistor (Inverted mode) is recommended
on the transmit line to force the transmit line to the idle state prior to the time your program initializes the
COM port. If you don't do this, the receiving device may see false transmissions prior to the first
character actually transmitted. Depending on what other circuitry is connected to the receive line, you
may need to do the same to prevent the ZX from receiving false transmissions.

This subroutine may be used to specify the data width, parity mode and stop bits for a hardware UART
channel (e.g. Com1) provided that it is called when the channel is closed. When used this way, the
t XxPi n and r xPi n parameters are ignored and values of 2 or more for the st opBi t s parameter will

select 2 stop bits. Also, the flag for inverted data mode is likewise ignored.

Example

Call ContChannel s(2, 9600)
Cal|l DefineCon(4, 0, 12, &HO08)

This call prepares channel 4 for transmit-only using pin 12, eight data bits, no parity and Non-inverted
Logic.

Compatibility

This function is not available in BasicX compatibility mode; you must use DefineCom3(). Additionally,
BasicX does not support 8-bit plus parity modes nor does it support the “Strip Parity” mode. Furthermore,
in BasicX characters received in 7-bit/no parity mode are aligned toward the MSB while in this
implementation they are properly aligned toward the LSB.

The ability to define the characteristics of Com1 is not available on mega32-based devices such as the

ZX-24.

See Also ComChannels, OpenCom, StatusCom

67

DefineCom3

Type Subroutine

Invocation DefineCom3(rxPin, txPin, flags)

Parameter Method Type Description

rxPin ByVal Byte The pin which will serve as the receive line.
txPin ByVal Byte The pin which will serve as the transmit line.
flags ByVal Byte Configuration flags. See the discussion below.
Discussion

This routine is provided solely for BasicX compatibility. It is equivalent to using Cal | Defi neCom(3,
rxPin, txPin, flags). See the DefineCom() routine for more information.

68

DefineX10

Type Subroutine

Invocation DefineX10(channel, rxPin, txPin, flags)

Parameter Method Type Description

channel ByVal Byte The X-10 channel being defined. The valid range is 1-2.
rxPin ByVal Byte The pin which will serve as the receive line.

txPin ByVal Byte The pin which will serve as the transmit line.

flags ByVal Byte Configuration flags. See the discussion below.
Discussion

This routine configures an X-10 communication channel, preparing it to be opened using OpenX10() . If
the specified channel is already open, this routine does nothing. Likewise if the specified channel is
invalid or if both the r xPi n and t xPi n parameters are zero or invalid. Note that either r xPi n or t XPi n
may be zero, allowing you to define a transmit-only or a receive-only X-10 channel. If valid, the pins
specified by r xPi n and t xPi n are automatically configured as input and output, respectively.

The f | ags parameter contains several bit fields used to specify some of the details of the operation of
the X-10 channel.

Configuration Flags Bit Values

Function Hex Value Bit Mask

LSB-first Transmit Bit Order &HO8 XX XX 1X XX
MSB-first Transmit Bit Order ~ &H0O XX XX 0X XX
Inverted Transmit Logic &H04 XX XX X1 XX
Non-inverted Transmit Logic =~ &HOO XX XX X0 XX
LSB-first Receive Bit Order &HO2 XX XX XX 1x
MSB-first Receive Bit Order &HOO0 XX XX XX 0X
Inverted Receive Logic &HO1 XX XX XX X1
Non-inverted Receive Logic &HOO0 XX XX XX X0

The remaining bits are currently undefined but may be employed in the future.

When non-inverted modes are selected, the idle state of the transmit line or receive line will be logic O.
Whether you should choose the inverted or non-inverted mode depends on the interface circuitry that you
use to connect to your X-10 transmitter/receiver.

When LSB-first modes are selected, the first bit to be sent/received will be the least significant bit of each
byte. This is useful when a Bit array is used to assemble/decompose the data that is sent/received since
the lower-indexed bits in a byte are of lower significance.

Example

Call Definex1i0(1, 0, 12, &H0O0)

This call prepares channel 1 for transmit-only using pin 12, non-inverted logic, MSB-first operation.
Compatibility

This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-

24). Moreover, it is not available in BasicX compatibility mode.

See Also CloseX10, OpenX10, StatusX10

69

DegToRad

Type Function returning Single

Invocation DegToRad(angle)

Parameter Method Type Description

angle ByVal Single The angle, in degrees, to convert to radian measure.
Discussion

The trigonometric functions in the System Library all use radian angle measure. Depending on the
programming task, it is sometimes more convenient to think of angles in terms of degrees. This function
and its companion RadToDeg() facilitate the conversion between the two systems.

Depending on optimization settings, if the parameter supplied to this function is known to be constant at

compile time, the compiler converts the value at compile time. Otherwise, code is generated to perform
the conversion (multiplication by a conversion factor) at run time.

Example
Dmf as Single
Dimtheta as Single ' the angle in degrees

f = Sin(DegToRad(theta))

Compatibility

This function is not available in BasicX compatibility mode.

See Also RadToDeg

70

Delay

Type Subroutine

Invocation Delay(time)

Parameter Method Type Description

time ByVal Single The amount of time to delay, in seconds.
Discussion

This routine suspends the current task for a period of time at least as long as specified. The actual delay
depends on what other tasks actually do that may run in the interim. It is possible that the task will be
suspended indefinitely depending on what another task might do.

Note that if the current task is locked, this call will unlock it.

There is a subtle difference between Del ay() and Sl eep() when the arguments are non-zero. For
Del ay() the specified time is the minimum amount of delay that the task will experience assuming that
no other task is ready to run. The actual delay could be up to 1.95ms longer than the specified delay.
For Sl eep() , the specified time is the maximum amount of delay that the task will experience assuming
that no other task is ready to run. The actual delay could be up to 1.95ms less than the specified delay.

Example

Do
Call PutPin(25, 0)
Cal | Del ay(0.5)
Call PutPin(25, 1)
Cal | Del ay(0.5)
Loop

This loop causes the red LED to turn on an off alternately for a half second each.
Compatibility
The BasicX documentation specifically indicates that Delay() will unlock a locked task. However, tests

indicate that this only happens if the parameter to Delay() is non-zero. This implementation unlocks a
task on any Delay() call.

See Also DelayUntilClockTick, Pause, Sleep, Register.RTCStopWatch

71

DelayUntilClockTick

Type Subroutine

Invocation DelayUntilClockTick()

Discussion
This routine suspends the current task until at least the next tick of the RTC. The actual delay depends
on what other tasks actually do that may run in the interim. It is possible that the task will be suspended
indefinitely.

If no other tasks are ready to run, the actual delay could be between 0 and 1.95ms.

This routine is exactly equivalent to Sl eep(1) .

See Also Delay, Pause, Sleep

72

Disablelnt

Type Function returning Byte
Invocation Disablelnt()
Discussion

This routine disables interrupts, preventing any interrupt source from interrupting the current task. Most
commonly, this function is used to temporarily disable interrupts thereby allowing a sequence of
instructions to execute without interruption. Of course, interrupts should be disabled for the shortest
possible time in order to avoid missing important interrupts (e.g. real time clock interrupts). If interrupts
are disabled for longer than one period of the RTC fast tick (typically 976 uS) you run the risk of missing
an RTC tick which will result in the RTC losing time.

The most common use for Disablelnt() is to implement “atomic access” to variables. This should be done
for any variable that occupies multiple bytes of memory (e.g. | nt eger, Long, etc.) or for a read-modify-
write operation on any variable when there is a possibility that another task or interrupt handler might
attempt to access the same variable.

The value returned by Disablelnt() should be passed to Enablelnt(). Doing so will allow proper nesting of
Disablelnt() and Enablelnt() calls.

Note

The Atomic block construct (described in the ZBasic Language Reference Manual) is the preferred
method for implementing atomic access.

Compatibility

This function is only available for native code targets, e.g. the ZX-24n.

Example
Dmiflag as Byte
iflag = Disablelnt()

' place code here that nust not be interrupted
Call Enablelnt(iflag)

See Also Enablelnt, UpdateRTC, Yield

73

Enablelnt

Type Subroutine

Invocation Enablelnt(flag)

Parameter Method Type Description

flag ByVval Byte The value controlling re-enabling of interrupts.
Discussion

This routine conditionally re-enables interrupts depending on the value of the f | ag parameter. If the
most significant bit of the f | ag parameter is a 1, interrupts will be re-enabled. Otherwise, the state of the
interrupt enabling will not change. Passing the value returned from Disablelnt() implements proper
nesting of DisableInt() and Enablelnt() calls so they are most often used in pairs as shown in the example
below.

Note

The Atomic block construct (described in the ZBasic Language Reference Manual) is the preferred
method for implementing atomic access.

Compatibility

This function is only available for native code targets, e.g. the ZX-24n.

Example
Dmiflag as Byte
iflag = Disablelnt()

' place code here that nust not be interrupted
Call Enablelnt(iflag)

See Also Disableint, UpdateRTC, Yield

74

ExitTask

Type Subroutine
Invocation ExitTask(taskStack)
ExitTask()
Parameter Method Type Description

taskStack ByRef array of Byte The stack for a task of interest.

Discussion

This routine attempts to terminate an active task. If no task stack is explicitly given, the task stack for the
Mai n() routine is assumed.

If this routine is invoked using an array other than one that is or was being used for a task stack the result
is undefined.

See the section on Task Management in the ZBasic Reference Manual for additional information
regarding task management.

When a task exits, whether normally or via ExitTask(), that task’s status is first set to 254 indicating that it
is in the process of exiting but that it is still in the task list. The exiting task will remain in the task list until
the task manager runs again. The task manager runs whenever a task switch is called for but you can
force it to run by invoking Sleep() or Yield(). Once the task manager removes an exiting task from the
task list, its status will change to 255 indicating that it is fully terminated.

Compatibility

This routine is not available in BasicX compatibility mode.

See Also ResumeTask, RunTask, StatusTask

75

Exp

Type Function returning Single

Invocation Exp(arg)

Parameter Method Type Description

arg ByVal Single The power of e to be computed.
Discussion

This function returns the Si ngl e value corresponding to the value e raised to the specified power. The
transcendental value e, upon which the natural logarithm is based, is approximately 2.718. This function
is the inverse of the Log() function.

See Also Expl0, Log, Log10,Pow

76

Expl0

Type Function returning Single

Invocation Expl0(arg)

Parameter Method Type Description

arg ByVal Single The power of 10 to be computed.
Discussion

This function returns the Si ngl e value corresponding to the value 10 raised to the specified power. This
function is the inverse of the Log10() function.

See Also Exp, Log, Log10,Pow

77

FirstTime

Type Function returning Boolean
Invocation FirstTime()
Discussion

When called the first time after downloading a program, this function will return True. Thereafter, it will
always return False even if the processor is powered down or reset. Subsequently downloading again
will again cause the function to return True on the first call, etc.

78

Fix

Type Function returning Single

Invocation Fix(arg)

Parameter Method Type Description

arg ByVal Single The value to be “fixed”.
Discussion

This function returns the Si ngl e representation of the integer that is nearest the supplied value, rounding
toward zero.

Example

Dmf as Single

f = Fix(1l.5) " result is 1.0
f = Fix(-1.5) " result is -1.0
See Also Ceiling, Floor, Fraction

79

FixB

Type Function returning Byte

Invocation FixB(arg)

Parameter Method Type Description

arg ByVal Single The value to be changed to integral form.
Discussion

The supplied Si ngl e value is first converted to a signed 32-bit integer, rounding toward zero, and then
the low 8 bits of that value is returned. The result isn’t particularly useful if the provided Si ngl e value is
negative or larger than 255.

Example
Dimb as Byte

b = Fi xB(100.5) " result is 100

80

Fixl

Type Function returning Integer

Invocation FixI(arg)

Parameter Method Type Description

arg ByVal Single The value to be changed to integral form.
Discussion

The supplied Si ngl e value is first converted to a signed 32-bit integer, rounding toward zero, and then
the low 16 bits of that value is returned. The result isn’'t particularly useful if the provided Si ngl e value is
outside the range —32768 to 32767, inclusive.

Example
Dimi as I|nteger

i = Fixl(-100.5) " result is -100

Compatibility
For compatibility with BasicX, if the provided Si ngl e value is larger than 32767 this function returns

32767. Similarly, if the value is less than —32767 (not —32768 as one would expect) this function returns
-32767.

81

FixL

Type Function returning Long

Invocation FixL(arg)

Parameter Method Type Description

arg ByVal Single The value to be changed to integral form.
Discussion

The supplied Si ngl e value is converted to a signed 32-bit integer, rounding toward zero, and that value
is returned. The result isn’t particularly useful if the provided Si ngl e value is outside the range —
2,147,485,648 to 2,147,485,647, inclusive.

Example
Dim | as Long

| = FixL(-100.5) " result is -100

82

FixUl

Type Function returning Unsignedinteger

Invocation FixUl(arg)

Parameter Method Type Description

arg ByVal Single The value to be changed to integral form.
Discussion

The supplied Si ngl e value is first converted to a signed 32-bit integer, rounding toward zero, and then
the low 16 bits of that value is returned. The result isn’'t particularly useful if the provided Si ngl e value is
outside the range 0 to 65535, inclusive.

Example
Dim ui as Unsi gnedl nt eger

ui = FixU (100.5) ' result is 100

83

FixUL

Type Function returning UnsignedLong

Invocation FixUL(arg)

Parameter Method Type Description

arg ByVal Single The value to be changed to integral form.
Discussion

The supplied Si ngl e value is converted to a signed 32-bit integer, rounding toward zero, and that value
is returned. The result isn’t particularly useful if the provided Si ngl e value is outside the range 0O to
4,294,967,295, inclusive.

Example
Dim ul as UnsignedLong

ul = Fi xUL(100.5) ' result is 100

84

FlipBits

Type Function returning Byte

Invocation FlipBits(arg)

Parameter Method Type Description

arg ByVal Byte The value to be bit-wise reversed.
Discussion

This function reverses the order of the bits in the supplied value and returns the result. This is useful, for
example, if you want to send data using Shi f t Qut () but you want the least significant bit to be sent first.

Example
Dimb as Byte

&B1011_0110

b
b Fl i pBits(b) "'result is &B0110_1101

85

Floor

Type Function returning Single

Invocation Floor(arg)

Parameter Method Type Description
arg ByVal Single The value of which to compute the floor.

Discussion

This function returns a Si ngl e value that is equal to the largest integer that is less than or equal to the
supplied value, effectively rounding down to the nearest integer.

Example

Dmflr as Single

flr = Floor(1.5) "'result is 1.0
flr = Floor(-1.5) ' result is -2.0
Compatibility

This function is not available in BasicX compatibility mode.

See Also Ceiling, Fix

86

Fmt

Type Function returning String

Invocation Fmt(val, fracDigits)

Parameter Method Type Description
val ByVal Single The value to convert to a string.
fracDigits ByVal Byte The number of digits to produce following the decimal point.

Discussion

This function returns a St r i ng that represents the value of the val parameter. The string will have a
number of digits following the decimal point as specified by the f r acDi gi t s parameter. The maximum
number of digits to the right of the decimal point is 6. If the f r acDi gi t s parameter specifies a larger
number, it will be ignored and 6 will be used.

For very large and very small values, the returned string may be in scientific notation form. Also, some
special cases are detected resulting in the strings shown in the table below. See the System Library
function SngCl ass() for more information about the special values.

Special Value Result"
NaN Mk kkN
£Infinity " & &&"
Denormalized value "H#. ##"

“The number of special characters following the decimal
point will be the same as the number of fraction digits that
would have been generated had the value been normal.

Compatibility
In BasicX, the maximum number of fraction digits is 3 and the valid range of the value parameter is —

999.0 to +999.0. If either of those ranges is exceeded, BasicX produces a string containing a single
asterisk. Moreover, no provision is made for detecting special values such as NaN.

87

Fraction

Type Function returning Single

Invocation Fraction(val)

Parameter Method Type Description
val ByVal Single The value from which the fractional part will be returned.

Discussion

This function returns the fractional portion of the supplied value. The sign of the returned value will be the
same as that of the value provided.

Example

Dim frac as Single

frac = Fraction(1.5) " result is 0.5
frac = Fraction(-1.5) " result is -0.5
Compatibility

This function is not available in BasicX compatibility mode.

88

FreqOut

Type Subroutine

Invocation FreqOut(pin, fregA, freqB, duration)

Parameter Method Type Description

pin ByVal Byte The pin on which the signal will be created.

fregA ByVal Integer The primary frequency, in Hertz.

freqB ByVal Integer The secondary frequency, in Hertz.

duration ByVal Single or Integer The duration of the signal, in seconds or units. See

the discussion below for more details.

Discussion

This routine generates a signal on the specified pin that is a digital approximation of two superimposed
sine waves having the specified frequencies. The method used to produce the signal is a pseudo-PWM
technique similar to that used for DACPi n(). The output signal is actually purely digital, consisting of a
series of precisely timed pulses that have an average value approximating that of two superimposed sine
waves. This signal must be filtered to get an analog approximation. Depending on what you want to do
with the signal, it may need to be amplified as well.

The duration of the signal may be specified in seconds by providing a Single value. Alternately, the time
may be specified in units of approximately 1 millisecond by giving duration as an Integer or
Unsignedinteger value. In either case, the valid range is approximately 1ms to 32 seconds.

Before beginning the frequency generation, the specified pin will be made an output. When the routine
returns, the pin will still be an output.

If the pin is invalid, or both frequencies are zero, or the duration is zero, this routine does nothing. The
maximum frequency that can be produced is approximately 14.4KHz. Requesting higher frequencies will
produce undefined results.

Resource Usage

This routine uses the 1/0 Timer and disables interrupts until the signal generation is completed. RTC ticks
are accumulated during the process so long signal durations should not cause a loss in RTC accuracy.
Example

Call FreqQut(pin, 440, 880, 5.0) ' play mddle Chigh C for 5 seconds

Because of the high frequency nature of the pulse train used to synthesize the waveform some filtering is
required. The example circuit below may be used to couple the output to a high impedance speaker (>

40Q) or an amplifier. Note, however, that the signal is too large to be fed to the microphone input of an
amplifier. Instead, the Auxiliary or Line input should be used.

89

1@uF
From O fl (i O

[-0 Pin To amplifier ar
high impedance

18uF i irC) speaker

Compatibility

In BasicX, the RTC will lose time if the duration is longer than 1 millisecond. Also, the duration is
documented as being limited to about 2.5 seconds

90

GetlWire

Type Function returning Byte

Invocation Get1Wire(pin)

Parameter Method Type Description

pin ByVal Byte The pin to be used for 1-Wire 1/0.
Discussion

This function retrieves a single bit using the 1-Wire protocol. To perform a 1-Wire operation, this function
along with related 1-Wire routines must be used in the proper sequence. See the specifications of your 1-
Wire device for more information.

The value returned will be either 0 or 1.

Resource Usage

This routine uses the 1/0 Timer and disables interrupts for approximately 100y S.

Example
Dmb as Byte

b = GetlWre(12)

See Also GetlWireByte, GetlWireData, PutlWire,
PutlWireByte, PutlWireData, Reset1Wire

91

GetlWireByte

Type Function returning Byte

Invocation GetlWireByte(pin)

Parameter Method Type
pin ByVal Byte

Description
The pin to be used for 1-Wire 1/0.

Discussion

This function reads a byte value (LSB first) using the 1-Wire protocol. It may be used instead of a series
of calls to Get 1W r e() in order to read a byte at a time. To perform a 1-Wire operation, this function
along with related 1-Wire routines must be used in the proper sequence. See the specifications of your 1-

Wire device for more information.

Resource Usage

This routine uses the 1/0 Timer and disables interrupts for about 100y S for each bit received.

Example
Dmb as Byte

b = Get1WreByte(12)

Compatibility

This routine is not available in BasicX compatibility mode.

See Also GetlWire, GetlWireData, PutlWire,
PutlWireByte, PutlWireData, Reset1Wire

92

GetlWireData

Type Subroutine

Invocation GetlWireData(pin, data, count)

Parameter Method Type Description

pin ByVal Byte The pin to be used for 1-Wire 1/0.
data ByRef any type The variable to receive the bytes read.
count ByVal Byte The number of bytes to read.
Discussion

This function retrieves 1 or more bytes (each LSB first) using the 1-Wire protocol and writes them to the
given variable. To perform a 1-Wire operation, this function along with related 1-Wire routines must be
used in the proper sequence. See the specifications of your 1-Wire device for more information.
Caution

If the variable provided has fewer bytes than the given count, subsequent memory locations will be
altered, usually with undesirable consequences.

Resource Usage

This routine uses the I1/O Timer and disables interrupts for about 100y S for each bit received.

Example
Dimba(l to 10) as Byte

Call GetlWreData(12, ba, SizeO (ba))

See Also GetlWire, GetlWireByte, PutlWire,
PutlWireByte, PutlWireData, Reset1Wire

93

GetADC (subroutine form)

Type Subroutine

Invocation GetADC(pin, val)

Parameter Method Type Description

pin ByVal Byte The pin from which to read an analog voltage.
val ByRef Single The variable in which to return the result.
Discussion

This function performs an analog-to-digital conversion on the signal present on the specified pin which
must be one of the analog port pins (see the table below). The return value will be a 10-bit digital
approximation of the input voltage with a range from zero to the AVcc reference voltage (usually +5 volts)
scaled to the range 0.0 to 1.0.

You must make the pin an input before calling this routine.

The conversion is performed using the AVcc reference voltage (connected internally to Vcc on the ZX-24,
ZX-24a, ZX-24p, ZX-24n, ZX-24e, ZX-24ae, ZX-128e and ZX-1281e).

Resource Usage

The ZX processors contain a single analog-to-digital converter thus allowing only one conversion to be
performed at a time. The conversion process takes approximately 220uS during which time the calling
task will be awaiting conversion completion.

Only analog port pins may be used to perform an analog-to-digital conversion. The analog port pins vary
depending on the ZX model and some ZX models have more analog input pins available.

Analog Ports and Pins
ZX Models Port Pins Port Pins
ZX-24, ZX-24a, ZX-24p, ZX-24n PortA 13-20 - -
ZX-40, ZX-40a, ZX-40p, ZX-40n PortA 33-40 - -
ZX-44, ZX-44a, ZX-44p, ZX-44n PortA 30-37 - -

ZX-24e, ZX-24ae PortA 29-36 - -

ZX-1281, ZX-1281n PortF 54-61 - -

ZX-1280, ZX-1280n PortF 90-97 PortK 82-89

ZX-24e, ZX-24ae PortA 29-36 - -

ZX-128e, ZX-1281e PortF 29-36 - -
Compatibility

Although the BasicX manual indicates that that it is not necessary to configure the pin to be an input
before calling, tests indicate that it is, in fact, necessary to do so. Consequently, the behavior of this
implementation matches the actual behavior of the BasicX platform.

94

GetADC (function form)

Type Function returning Integer

Invocation GetADC(pin)

Parameter Method Type Description
pin ByVal Byte The pin from which to read an analog voltage.
Discussion

This function performs an analog-to-digital conversion of the voltage present on the specified pin which
must be one of the analog port pins (see the table below). The return value will be a 10-bit digital
approximation of the input voltage with a range from zero to the AVcc reference voltage (usually +5 volts).
The return value represents the measured voltage voltage according to the formula Viesr * adcVal /
1024 where V;et is the AVcce reference voltage and adcVal is the value returned by GetADC().

You must make the specified pin an input before calling this routine.

The conversion is performed using the AVcc reference voltage (connected internally to Vcc on the ZX-24,
ZX-24a, ZX-24p, ZX-24n, ZX-24e, ZX-24ae, ZX-128e and ZX-1281e).

Resource Usage

The ZX processors contain a single analog-to-digital converter thus allowing only one converstion to be
performed at a time. The conversion process takes approximately 220uS during which time the calling

task will be wait for conversion completion.

Only analog port pins may be used to perform an analog-to-digital conversion. The analog port pins vary
depending on the ZX model and some ZX models have more analog input pins available.

Analog Ports and Pins

ZX Models Port Pins Port Pins
ZX-24, ZX-24a, ZX-24p, ZX-24n PortA 13-20 - -
ZX-40, ZX-40a, ZX-40p, ZX-40n PortA 33-40 - -
ZX-44, ZX-44a, ZX-44p, ZX-44n PortA 30-37 - -
ZX-24e, ZX-24ae PortA 29-36 - -
ZX-1281, ZX-1281n PortF 54-61 - -
ZX-1280, ZX-1280n PortF 90-97 PortK 82-89
ZX-24e, ZX-24ae PortA 29-36 - -
ZX-128e, ZX-1281e PortF 29-36 - -
Compatibility

Although the BasicX manual indicates that that it is not necessary to configure the pin to be an input
before calling, tests indicate that it is, in fact, necessary to do so. Consequently, the behavior of this
implementation matches the actual behavior of the BasicX platform.

95

GetBit

Type Function returning Byte

Invocation GetBit(var, bitNumber)

Parameter Method Type
var ByRef any type
bitNumber ByVal int8/16

Description
The variable from which the bit will be read.
The bit number to read.

Discussion

This function extracts a single bit from memory beginning at the location of the specified variable. Bit
numbers 0-7 are taken from the byte at the specified location, bit numbers 8-15 are taken from the
subsequent byte, etc. In each case, the lower bit number corresponds to the least significant bit of the
byte while the higher bit number corresponds to the most significant bit.

The return value will always be 0 or 1.

Compatibility

In BasicX compatibility mode the second parameter must be a Byt e type.

See Also PutBit

96

GetDate

Type Subroutine

Invocation GetDate(year, month, day)
GetDate(year, month, day, dayNum)

Parameter Method Type Description

year ByRef intl6 The variable in which to place the year value (1999-2177).
month ByRef Byte The variable in which to place the month value (1-12).
day ByRef Byte The variable in which to place the day value (1-31).
dayNum ByVal integral The day number to convert to year, month, day.
Discussion

This routine decomposes a day number into the corresponding year, month and day components. The
month value of 1 corresponds to January while 12 corresponds to December. If the day number is
omitted, the value of Regi st er . RTCDay is used.

Note that Regi st er . RTCDay is initialized to zero on power-up or reset. This day number corresponds to
January 1, 1999.

See Also GetDayNumber, GetDayOfWeek, GetDayOfYear, PutDate

97

GetDayNumber

Type Function returning UnsignedInteger

Invocation GetDayNumber(dayOfYear, year)

Parameter Method Type Description

dayofYear ByVal integral The ordinal day number of the year (Jan 1 = 1).
year ByVal integral The year (1999 to 2178).

Discussion

This routine computes the day number corresponding to the day of the year specified by the parameters.
Day number 0 is January 1, 1999. The days in a year are humbered beginning with 1.

Example
Di m dayNum as Unsi ghedl nt eger

dayNum = Get DayNumnber (59, 2005)

See Also GetDate, GetDayOfWeek, GetDayOfYear, PutDate

98

GetDayOfWeek

Type Function returning Byte
Invocation GetDayOfWeek()
GetDayOfWeek(dayNum)
Parameter Method Type Description
dayNum ByVal integral The day number to convert to year, month, day.

Discussion

This routine computes the day of the week corresponding to a day number. If the day number is omitted,
the value of Regi st er . RTCDay is used.. A return value of 1 corresponds to Sunday and a value of 7
corresponds to Saturday with the remaining days falling in order in between. There are built-in constants
that represent the day numbers as shown in the table below.

Day of Week Constants
Constant Value
zxSunday 1
zxMonday
zxTuesday
zxWednesday
zXThur sday
zxFri day
zxSat ur day

~No o WDN

Note that Regi st er . RTCDay is initialized to zero on power-up or reset. This day number corresponds to
Friday, January 1, 1999.

See Also GetDate, GetDayNumber, GetDayOfYear

99

GetDayOfYear

Type Function returning Unsignedinteger

Invocation GetDayOfYear(dayNum)
GetDayOfYear(dayNum, year)

Parameter Method Type Description

dayNum ByVal integral The day number to convert to day of year and year.
year ByRef int16 The variable in which the year will be stored.
Discussion

This routine computes the day of the year and the year corresponding to a day number (such as
represented by Regi st er. RTCDay). The first day of the year is numbered 1. If the second parameter is

present, the variable to which it refers will receive the year value.

Example

Di m dayOf Year as Unsi gnedl nt eger
Di m year as Unsi gnedl nt eger

dayOf Year = Get DayOf Year (Regi st er. RTCDay, year)

See Also GetDate, GetDayNumber, GetDayOfWeek

100

GetEEPROM

Type Subroutine

Invocation GetEEPROM(addr, var, count)

Parameter Method Type Description

addr ByVal Long The Program Memory address from which to begin reading.
var ByRef any type The variable in which to place the data read.

count ByVal intl6 The number of bytes to read.

Discussion

This routine is provided for compatibility with BasicX. The more aptly named GetProgMem() should be
used by new applications.

See Also GetProgMem, PutProgMem

101

GetNibble

Type Function returning Nibble

Invocation GetNibble(var, nibbleNumber)

Parameter Method Type Description

var ByRef any type The variable from which the nibble will be read.
nibbleNumber ByVal int8/16 The nibble number to read.

Discussion

This function extracts a nibble value from memory beginning at the location of the specified variable.
Nibble numbers 0-1 are taken from the byte at the specified location, nibble numbers 2-3 are taken from
the subsequent byte, etc. In each case, the lower nibble number corresponds to the least significant four
bits of the byte while the higher nibble number corresponds to the most significant four bits of the byte.

The return value will always be in the range 0 to 15.

Compatibility

This function is not available in BasicX compatibility mode.

See Also PutNibble

102

GetPersistent

Type Subroutine

Invocation GetPersistent(addr, var, count)

Parameter Method Type Description

addr ByVal intl6 The address in Persistent Memory from which to read.
var ByRef any type The variable in which to place the data read.

count ByVal int8/16 The number of bytes to read.

Discussion

This routine reads one or more bytes from Persistent Memory and places them in RAM beginning at the
location of the specified variable. Note that if a number of bytes is specified that is larger than the given
variable, adjacent memory will be overwritten, possibly with detrimental results.

The DataAddress property is useful to get the address of a Persistent Memory data item.

Example

Dim pvar(1l to 10) as PersistentByte
Dmvar(1l to 10) as Byte
Call GetPersistent(pvar. Dat aAddress, var, SizeO (pvar))

Compatibility

This routine is not available in BasicX compatibility mode.

See Also PutPersistent

103

GetPin

Type Function returning Byte
Invocation GetPin(pin)

Parameter Method Type Description
pin ByVal Byte The pin to read.
Discussion

If the specified pin is configured to be an input, this function reads the state of the pin and returns the
value 0 or 1 corresponding to logic zero and logic one. If the pin number is invalid the result is undefined.
If the pin is configured to be an output, it is reconfigured to be an input in tri-state mode before reading
the input value.

Compatibility
The BasicX documentation says that the result is undefined if Get Pi n() is called for a pin that is

configured as an output. Tests show that the pin is actually reconfigured to be an input in tri-state mode.
The ZBasic implementation of Get Pi n() does the same.

See Also PutPin

104

GetProgMem

Type Subroutine

Invocation GetProgMem(addr, var, count)

Parameter Method Type Description

addr ByVal Long The Program Memory address from which to begin reading.
var ByRef any type The variable in which to place the data read.

count ByVal intl6 The number of bytes to read.

Discussion

This routine reads one or more bytes from Program Memory (where the user program is stored) and
places them in RAM beginning at the location of the specified variable. Note that if a number of bytes is
specified that is larger than the given variable, adjacent memory will be overwritten, possibly with
detrimental results.

See Also PutProgMem

105

GetQueue

Type Subroutine

Invocation GetQueue(queue, var, count)
GetQueue(queue, var, count, timeLimit, timeoutFlag)

Parameter Method Type Description

queue ByRef array of Byte The queue from which to read data.

var ByRef any type The variable to which to write the data from the queue.
count ByVval int16 The number of bytes to read from the queue.

timeLimit ByVval Single The amount of time to wait for data availability, in seconds.
timeoutFlag ByRef Boolean A variable to indicate if the call timed out.

Discussion

This routine has two forms. The first form simply attempts to read the given number of bytes from the
specified queue and place them in RAM beginning at the location of the given variable. In this case, the
routine will not return until requested number of bytes is available. If not enough data is placed in the
gueue, the routine will never return. Note that if the calling task is locked and the queue contains
insufficient space for the data to be written data when this routine is called, the task will be unlocked to
allow other tasks to run.

The second form specifies, additionally, ati nmeLi nmit and af | ag variable. In this case, if the requested
number of bytes does not become available within the specified time, the routine will return, having
transferred zero bytes, and the f | ag variable will be set to Tr ue indicating that the routine timed out. If
the requested number of bytes does become available before the specified time expires, that number of
bytes will be removed from the queue and transferred to the specified memory location and the f | ag
variable will be set to Fal se indicating that the transfer did not time out. The resolution of the timeout
value is the same as the RTC tick, approximately 1.95mS.

In either case, if data is removed from the queue it is written to RAM beginning at the location of the
specified variable. Note that if the count specifies a number of bytes larger than the variable, the
additional bytes will be written to subsequent RAM locations. This may have exactly the effect that you
intended but depending on the function of those subsequent bytes it may have a deleterious effect on
your program.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details.

Although this subroutine will accept a String variable as the second parameter it is generally not useful to
do so because the control bytes at the beginning of the string will be overwritten. If you want to populate
a string using data from a queue the alternatives are:

1) Build up the string by retrieving individual characters one by one and appending them to a string.

2) Retrieve a group of bytes to a Byte array and use the MakeSt ri ng() function to create a string
from the constituent bytes.

3) Use the Get QueueSt r () function to obtain a string containing characters from the queue.

Example

DiminQueue(l to 40) as Byte
Dim lval as Long

Cal | OpenQueue(i nQueue, SizeO (inQueue))
Call Get Queue(i nQueue, lval, SizeO (lval))

106

Alternately,

DiminQueue(l to 40) as Byte

Dim lval as Long

Dim timeQut as Bool ean

Call OpenQueue(i nQueue, SizeO (inQueue))

Call Get Queue(inQueue, lval, SizeO(lval), 1.0, tinmeQut)

Compatibility

BasicX allows any type for the first parameter. This implementation requires that it be an array of Byt e.
The BasicX manual indicates that the range of values for the timeLimit parameter is 0.0 to 65.536

seconds implying a 1ms resolution. This implementation has a 1.95ms resolution and a range of 0.0 to
about 127.0 seconds.

See Also GetQueueStr

107

GetQueueBufferSize

Type Function returning Integer

Invocation GetQueueBufferSize(queue)

Parameter Method Type Description

gqueue ByRef array of Byte The queue of interest.
Discussion

This function returns the number of bytes of data space in a queue that has been properly initialized using
OpenQueue() . Note that the data space in a queue is somewhat less than the number of bytes in the
byte array comprising the queue due to space required for queue management information. See
OpenQueue() for more details.

Compatibility

BasicX allows any type for the first parameter. This implementation requires that it be an array of Byt e.

108

GetQueueCount

Type Function returning Integer

Invocation GetQueueCount(queue)

Parameter Method Type Description

gqueue ByRef array of Byte The queue of interest.
Discussion

This function returns the number of bytes of data currently in the specified queue. It is useful to note that
this value subtracted from that returned by Get QueueBuf f er Si ze() indicates the remaining available
data space in the queue.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details.

Compatibility

BasicX allows any type for the first parameter. This implementation requires that it be an array of Byte.

109

GetQueueStr

Type Function returning String

Invocation GetQueueStr(queue) or
GetQueueStr(queue, maxChars)

Parameter Method Type Description

queue ByRef array of Byte The queue of interest.

maxChars ByVval integral The maximum number of characters to retrieve.
Discussion

This function extracts a number of characters from the specified queue and returns a string populated
with those characters. The number of characters is limited to the lesser of 1) the number of characters in
the queue at the time of the call, 2) the value of maxChar s (if specified), and 3) the maximum number of
characters allowed in a string.

Compatibility

This function is not available in BasicX compatibility mode.

See Also GetQueue

110

GetTime

Type Subroutine

Invocation GetTime(hour, minute, seconds)
GetTime(hour, minute, seconds, tick)

Parameter Method Type Description

hour ByRef Byte The variable in which to place the hour value (0-23).
minute ByRef Byte The variable in which to place the minutes value (0-59).
seconds ByRef Single The variable in which to place the seconds value.

tick ByVal integral The tick count to decompose.

Discussion

This routine decomposes a tick count into the equivalent hour, minute and second components. If the tick
count is omitted, the value of Regi st er . RTCTi ck is used. The resolution of the seconds value is

approximately 1.95ms.

Note that Regi st er . RTCTi ck is initialized to zero on power-up or reset. This corresponds to 0:00:00.

Compatibility

Explicitly specifying the tick count to use is not supported in BasicX compatibility mode.

111

GetTimestamp

Type Subroutine

Invocation GetTimestamp(year, month, day, hour, minute, seconds)

Parameter Method Type Description

year ByRef intl6 The variable in which to place the year value (1999-2177).
month ByRef Byte The variable in which to place the month value (1-12).
day ByRef Byte The variable in which to place the day value (1-31).

hour ByRef Byte The variable in which to place the hour value (0-23).
minute ByRef Byte The variable in which to place the minutes value (0-59).
seconds ByRef Single The variable in which to place the seconds value.
Discussion

This routine decomposes the value of Regi st er . RTCDay and Regi st er . RTCTi ck into year, month,
day, hour, minute and second components. See Get Dat e() and Get Ti me() for more details.

112

HiByte

Type Function returning Byte

Invocation HiByte(val)

Parameter Method Type Description

val ByVval numeric The value of which the high byte is desired.
Discussion

This function returns the most significant byte of the specified value except that if the specified value is a
Byte value, the result will be zero.

Compatibility

This function is not available in BasicX compatibility mode.

See Also HiwWord, LoByte, LoWord, MidWord

113

HiWword

Type Function returning Unsignedinteger

Invocation HiWord(val)

Parameter Method Type Description

val ByVval numeric The value of which the high word is desired.
Discussion

This function returns the most significant word of the specified value except that if the specified value is a
Byte, Integer or Unsignedinteger value, the result will be zero.

Compatibility

This function is not available in BasicX compatibility mode.

See Also HiByte, LoByte, LoWord, MidWord

114

12CCmd

Type Function returning Integer

Invocation [2CCmd(channel, slavelD, writeCnt, writeData, readCnt, readData)

Parameter Method Type Description

channel ByVal Byte The 12C channel number (0-4).

slavelD ByVal Byte The identifier of the 12C slave device (in the 7 high order bits).

writeCnt ByVal integral The number of bytes to write (0 — 65535).
writeData ByRef any type The variable containing the data to write.
readCnt ByVal integral The number of bytes to read (0 —65535).
readData ByRef any type The variable in which to place the data read.

Discussion

The routine allows you to send and/or receive data from an 12C device. The specified channel must have
been previously opened with a call to Openl 2C() . If the channel has not been opened, the results are
undefined. If an invalid channel is specified or if both wri t eCnt and r eadCnt are zero, the function
returns immediately without doing anything and the return value is zero. You may specify the value O for
wri t eDat a or r eadDat a if no data is being provided for writing or reading, respectively. If you do this,
the corresponding data count parameter must also be zero or the compiler will issue an error message.

The execution of the 12C command sequence begins by issuing an 12C start condition on the SDA and
SCL lines. Next, if wri t eCnt is non-zero the given sl avel D value is transmitted (with the least
significant bit being zero) followed by the specified number of bytes taken from wri t eDat a. Then, if
readCnt is non-zero the sl avel D value is transmitted again but with the least significant bit being one
and the specified number of bytes is read from the slave and placed in r eadDat a. Finally, an 12C stop
condition is issued followed by both the SDA and SCL lines returning to the idle state.

The return value may be negative, zero or positive. If the return value is negative it signifies that the
slave failed to positively acknowledge one of the transmitted bytes. The value is the negative of the
number of bytes that were not successfully transmitted. If the slave fails to positively acknowledge either
the slave ID or the first data byte, the return value will be the negative of the wri t eCnt parameter value.
If the return value is non-negative it represents the number of data bytes read from the slave and placed
in r eadDat a.

Example

Dimodata(l to 2) as Byte, idata(l to 10) as Byte
Dimival as Integer

Call Openl2C (1, 12, 13)

odata(l) = &HO6

odata(2) = &HOO

ival = 2CCnd(1, &H7e, 2, odata(l), 10, idata(l))

Resource Usage

This function uses the I/0O Timer for channels 1 to 4. If the timer is already in use, the result and the
return value are both undefined. Interrupts are disabled for periods of about 9 times the selected 12C bit
time plus additional amounts due to slave clock stretching for each byte sent and received (interrupts are
reenabled between bytes). However, RTC ticks are accumulated during the process so the RTC should
not lose time.

115

Compatibility

This function is not available in BasicX compatibility mode.

See Also Openl2C, 12CGetByte, 12CPutByte, 12CStart, 12CStop, Closel2C

116

12CGetByte

Type Function returning Byte

Invocation [2CGetByte(channel, ackValue)

Parameter Method Type Description

channel ByVval Byte The 12C channel number (0-4).

ackValue ByVal Boolean The value to send to the slave in acknowledgement of the data byte.
Discussion

This function retrieves a data value from an 12C slave and responds to the receipt of that data by sending
back the specified acknowledgement value. The value returned by this function is the data byte received
from the slave.

This function can be used in conjunction with | 2CSt art () ,| 2CPut Byt e() and | 2CSt op() to perform
a lower level interaction with an 12C slave device. Knowledge of the 12C protocol and the specifications of
the particular 12C device are required in order to use this function.

If the specified 12C channel has not been properly prepared using Openl 2C(), the results are undefined.
If an invalid channel number is specified, the function returns immediately without doing anything.
Resource Usage

This function uses the I/O Timer for channels 1 to 4. If the timer is already in use, the function will do
nothing and the return value is undefined. Interrupts are disabled for about 9 times the selected 12C bit
time plus additional amounts due to slave clock stretching. However, RTC ticks are accumulated during
the process so the RTC should not lose time.

Compatibility

This function is not available in BasicX compatibility mode.

See Also Openl2C, Closel2C, I2CPutByte, I2CStart, 12CStop, 12CCmd

117

I2CPutByte

Type Function return Boolean

Invocation [2CPutByte(channel, dataVal)

Parameter Method Type Description

channel ByVval Byte The 12C channel number (0-4).
dataVal ByVal Byte The data byte to send to the slave.
Discussion

This function transmits a data value to an I2C slave and reads the acknowledgement bit returned by the
slave. The value returned by this function is the value of the acknowledge bit received from the slave
device — a positive acknowledgement results in a True value being returned.

This function can be used in conjunction with | 2CSt art (), | 2CGet Byt e() and | 2CSt op() to perform
a lower level interaction with an 12C slave device. Knowledge of the 12C protocol and the specifications of
the particular 12C device are required in order to use this function.

If the specified 12C channel has not been properly prepared using Openl 2C(), the results are undefined.
If an invalid channel nhumber is specified, the function returns immediately without doing anything.
Resource Usage

This function uses the for channels 1 to 4. If the timer is already in use, the function will do nothing and
the return value is undefined. Interrupts are disabled for about 9 times the selected 12C bit time plus
additional amounts due to slave clock stretching. However, RTC ticks are accumulated during the
process so the RTC should not lose time.

Compatibility

This function is not available in BasicX compatibility mode.

See Also Openl2C, Closel2C, 12CGetByte, 12CStart, 12CStop, 12CCmd

118

|2CStart

Type Subroutine

Invocation [2CStart(channel)

Parameter Method Type Description

channel ByVval Byte The 12C channel number (0-4).
Discussion

This subroutine initiates an 12C bus cycle by implementing the proper sequence of transitions on the SDA
and SCL lines.

This subroutine can be used in conjunction with | 2CGet Byt e(), | 2CPut Byt e() and | 2CSt op() to
perform a lower level interaction with an 12C slave device. Knowledge of the 12C protocol and the
specifications of the particular 12C device are required in order to use this function.

If the specified 12C channel has not been properly prepared using Openl 2C(), the results are undefined.
If an invalid channel number is specified, the function returns immediately without doing anything.
Compatibility

This subroutine is not available in BasicX compatibility mode.

See Also Openl2C, Closel2C, 12CGetByte, 12CPutByte, 12CStop, 12CCmd

119

12CStop

Type Subroutine

Invocation I2CStop(channel)

Parameter Method Type Description

channel ByVval Byte The 12C channel number (0-4).
Discussion

This subroutine terminates an 12C bus cycle by implementing the proper sequence of transitions on the
SDA and SCL lines.

This subroutine can be used in conjunction with | 2CSt art (), | 2CGet Byt e() and | 2CPut Byt e() to
perform a lower level interaction with an 12C slave device. Knowledge of the 12C protocol and the
specifications of the particular 12C device are required in order to use this function.

If the specified 12C channel has not been properly prepared using Openl 2C(), the results are undefined.
If an invalid channel number is specified, the function returns immediately without doing anything.
Compatibility

This subroutine is not available in BasicX compatibility mode.

See Also Openl2C, Closel2C, 12CGetByte, 12CPutByte, 12CStart, 12CCmd

120

|If

Type Function returning the same type as the second parameter

Invocation [If(testExpr, trueExpr, falseExpr)

Parameter Method Type Description

testExpr ByVal Boolean The expression to evaluate, the result of which
determine which expression value will be returned.

trueExpr ByVval any type The value to return if testExpr evaluates to True.

falseExpr ByVval any type The value to return if testExpr evaluates to False.

Discussion

This function is adapted from VB6 where it is sometimes called “Immediate If". It is used to select one of

two values based on the result of a test. Employing this function will generally result in less code than an
equivalent If-Then-Else structure. On the other hand, the execution of this function does use more stack

space than an equivalent If-Then-Else structure. Also, it is important to note that using this function is not
exactly the same as an If-Then-Else because both the trueExpr and the falseExpr are always evaluated.

This difference is only significant if the evaluation of one or both of these expressions has side effects.

Note that trueExpr and falseExpr must have the same type or be of compatible types.

Examples

Dima as Byte

Dim b as Unsi gnedl nt eger
Dim u as Unsi gnedl nt eger

u=IlIf(a>3, 5 b

Debug. Print I1f(a = 5 “Hello", "Goodbye")

Compatibility

This function is not available in BasicX compatibility mode. Also, it is only supported by ZX firmware
v1.1.0 or later.

121

InputCapture

Type Subroutine

Invocation InputCapture(data, count, flags)
InputCapture(data, count, flags, timeout)

Parameter Method Type Description
data ByRef array of The array in which pulse width information will be stored.
Unsignedinteger
count ByVval int16 The number of pulse widths to store. This should be no
larger than the number of entries in the passed array.
flags ByVval Byte A value of zero requests that a falling edge begin the

capture process while a value of 1 indicates a rising edge.
All other falues are reserved.

timeout ByVal Integral If non-zero, this parameter specifies a timeout value that, if
exceeded, will terminate the input capture process.

Discussion

Invoking this routine is equivalent to the call | nput Capt ur eEx(pi n, data, count, flags) or
| nput Capt ureEx(pin, data, count, flags, tineout) wherepin isthe default input capture

pin for the device as shown in the table below. See the description of InputCaptureEx() for more detailed
information.

Default Input Capture Pin

ZX Models Pin

ZX-24, ZX-24a, ZX-24p, ZX-24n 12,D.6
ZX-40, ZX-40a, ZX-40p, ZX-40n 20,D.6
ZX-44, ZX-44a, ZX-44p, ZX-44n 15,D.6
ZX-24e, ZX-24ae 14, D.6
ZX-1281, ZX-1281n 29,D.4
ZX-1280, ZX-1280n 47,D.4
ZX-128e, ZX-1281e 8,D.4

Example
Dim pd(1 to 5) as Unsignedl nt eger

Call PutPin(12, zxInputTri State)
Call | nputCapture(pd, UBound(pd), 1)

Compatibility

The BasicX compiler erroneously allows any variable for the first parameter. This implementation
requires the data type to be Unsi gnedl nt eger or| nt eger although it needn’t be an array. For
practical purposes, an array will almost always be used.

In BasicX compatibility mode, the use of the optional fourth parameter is not supported. Also, because
the processor runs at twice the speed of the BX-24 processor, the default time unit is one half of that
provided for by BasicX.

See the description of InputCaptureEx() for a discussion of which ISRs are required.

122

InputCaptureEx

Type Subroutine

Invocation InputCaptureEx(pin, data, count, flags)
InputCaptureEx(pin, data, count, flags, timeout)

Parameter Method Type Description
pin ByVval Byte The input capture pin to use.
data ByRef array of The array in which pulse width information will be stored.
Unsignedinteger
count ByVval int16 The number of pulse widths to store. This should be no
larger than the number of entries in the passed array.
flags ByVval Byte A value of zero requests that a falling edge begin the

capture process while a value of 1 indicates a rising edge.
All other falues are reserved.

timeout ByVal integral If non-zero, this parameter specifies a timeout value that, if
exceeded, will terminate the input capture process.

Discussion

This routine collects timing data from a pulse train applied to the specified input capture pin and stores it
in the specified array. The stored data reflects the width of the successive high and low portions of the
pulse train. If any segment is longer than can be represented in a 16-bit value, the stored value will be
65535 (&Hffff) and the immediately following value, if any, will be meaningless.

Prior to commencing the input capture process all of the elements of the data array are initialized with the
value 65534 (&Hfffe). This fact can be used to determine the actual number of timing data stored in the
array during input capture.

The stored values represent the number of I/0O Timer ticks (by default about 67.8ns) measured for each
segment of the pulse train. However, the value of Regi st er. Ti mer Speedl may be changed to allow

longer pulse widths to be measured. See the section on Timers for more information.

If the optional t i meout parameter is specified and is non-zero, the Input Capture process will be
terminated if N * 65536 I/O Timer ticks occur (where N is the value of the t i meout parameter) before the
specified number of datapoints has been stored. This gives a range of possible timeout values from
about 4.5mS to 290 seconds with a resolution of 4.5mS (using the default value of

Regi st er. Ti mer Speedl).

The calling task will be suspended until the specified number of datapoints has been stored, the timeout
value is exceeded or the task is resumed using ResumeTask(). Other tasks will be allowed to run but you
must be careful to not call any routines that may disable interrupts for long periods of time because that
could interfere with the accuracy of the input capture timing.

Resource Usage

This routine utilizes a timer to collect the timing information of the pulse train. The table below indicates
which timer is used and the corresponding input pin for the supported channels. The corresponding timer
busy flag (e.g. Regi st er. Ti mer 1Busy) will be set Tr ue for the duration of the input capture operation.
Also, on the ZX-24, ZX-24a, ZX-24p and ZX-24n the input capture pin is common with PortC bit 0. This
means that you should set pin 12 to be an input (either tri-state or pull-up) when you want to use
InputCapture() so that it doesn't interfere with the pulse train to be measured. This routine cannot be
used at the same time as Qut put Capt ur e() or Qut put Capt ur eEx() when that routine requires the
same timer.

123

Valid Input Capture Pins

ZX Models TimerlPin Timer3Pin Timer4 Pin Timer5Pin
ZX-24, ZX-24a, ZX-24p, ZX-24n 12,D.6 - - -
ZX-40, ZX-40a, ZX-40p, ZX-40n 20,D.6 - - -
ZX-44, ZX-44a, ZX-44p, ZX-44n 15,D.6 - - -
ZX-24e, ZX-24ae 14, D.6 - - -
ZX-1281, ZX-1281n 29,D.4 9, E7 - -
ZX-1280, ZX-1280n 47,D.4 9, E7 35, L.0 36, L.1
ZX-128e, ZX-1281e 8,D.4 13, E.7 - -

For native code devices, the table below gives the ISRs that may be loaded if your program uses
InputCaptureEx(). If the compiler cannot determine which specific timer ISR is required by analyzing the
parameters used, all listed ISRs will be included.

ISRs Required

Underlying CPU ISR Name

nmega644pP Timerl Capt, Tinmerl OVF

nmegalz8l Timerl Capt, Tinmerl OVF,
Timer3_Capt, Tinmer3_OVF

nmegalz8o Timerl Capt, Tinmerl OVF,

Ti mer3_Capt, Timer3_OVF,
Ti mer4_Capt, Ti mer4_OVF,
Timer5_Capt, Timer5_OVF

Example

Dim pd(1 to 5) as Unsignedl nteger

Call PutPin(D.6, zxlnputTriState)

Cal | | nput CaptureEx(D. 6, pd, UBound(pd), 1)
Compatibility

This routine is not available in BasicX compatibility mode.

124

LBound

Type Function returning Integer

Invocation LBound(array) or
LBound(array, dimension)

Parameter Method Type Description

array ByRef any array The array about which the bound information is desired.

dimension ByVval int16 The dimension of interest. See the description for more
details.

Discussion

This function returns the lower bound of the specified array. There are two forms. The first requires only
the array to be specified. In this case, the lower bound of the first dimension of the array is returned. The
second form specifies a dimension number, the valid range of which is 1 to the number of dimensions of
the array. The array may be located in RAM, Program Memory or Persistent Memory.

Note that the use of this function instead of hard-coding values makes your code easier to maintain.

Example

Dim ba(1l to 20) as Byte
Dmm(3 to 5 -6 to 7) as Byte
Dimi as |nteger

i = LBound(ba) ' the result is 1
i = LBound(rmm) " the result is 3
i = LBound(ma, 1) " the result is 3
i = LBound(ma, 2) " the result is -6
Compatibility

This function is not available in BasicX compatibility mode.

See Also UBound

125

LCase

Type Function returning String

Invocation LCase(str)

Parameter Method Type Description

str ByVval String The string to be changed to lower case.
Discussion

This function returns a new string containing the same characters as the passed string except that all
upper case characters will be replaced with lower case characters.

Example

Dms as String, sl1 as String

s = "Hello, world!"
s2 = LCase(s) ' the result will be "hello, world!"
See Also UCase

126

L eft

Type Function returning String

Invocation Left(str, length)

Parameter Method Type Description

Str ByVval String The string from which to extract characters.

length ByVal int8/16 The number of characters to extract from the string.
Discussion

This function returns a string consisting of the leftmost characters of the given string. The maximum
number of characters in the returned string is the smaller of 1) the number of characters in the string
passed as the first parameter and 2) the value of the second parameter. Internally, the length is
interpereted as a 16-hit signed value and negative values are treated as zero.

This function produces the same result as M d(str, 1, length).

Example

Dms as String, s2 as String

s = "Hello, world!"
s2 = Left(s, 5) " the result will be "Hello"
See Also Mid, Right, Trim

127

Len

Type Function returning Integer

Invocation Len(str)

Parameter Method Type Description

str ByVval String The string of which the length is to be determined.
Discussion

This function returns the length of the given string, in bytes. Note that the length may be zero.

Example

Dims as String
Dimi as Integer

s = "Hello, world!'"

i = Len(s) " the result will be 13

128

LoByte

Type Function returning Byte

Invocation LoByte(val)

Parameter Method Type Description

val ByVval numeric The value of which the low byte is desired.
Discussion

This function returns the least significant byte of the specified value.

Compatibility

This function is not available in BasicX compatibility mode.

See Also HiByte, HiWord, LowWord, MidWord

129

LockTask

Type Subroutine
Invocation LockTask()
Discussion

This routine causes the running task to become locked so that no other task can run. The one exception
to this is a task that is awaiting an external interrupt or an interval interrupt. Note that a task may explicitly
unlock itself by calling Unl ockTask() . A task will also become unlocked if it calls any of the sleep or

delay routines.

Note that multiple calls to LockTask() have the same effect as a single call to LockTask() assuming
that no other calls are made that implicitly unlock the task.

Compatibility

The BasicX documentation indicates that a locked task will yield to a task that is awaiting an interrupt

when the interrupt occurs. However, testing indicates that this is, in fact, not the case. This
implementation allows an interrupt task to have priority over a locked task.

See Also UnlockTask, Delay, Sleep, WaitForinterrupt, WaitForinterval

130

Log

Type Function returning Single

Invocation Log(arg)

Parameter Method Type Description

arg ByVal Single The value of which the natural log is to be computed.
Discussion

This function returns the Si ngl e value corresponding to natural logarithm (base e) of the value provided.
The transcendental value e, upon which the natural logarithm is based, is approximately 2.71828. This
function is the inverse of the Exp() function.

If the value of the argument provided is zero, the result is positive infinity. If the argument value is
negative, the result is NaN.

See Also Exp, Expl0, Logl0

131

Logl0

Type Function returning Single

Invocation Log10(arg)

Parameter Method Type Description

arg ByVal Single The value of which the common log is to be computed.
Discussion

This function returns the Si ngl e value corresponding to the common logarithm (base 10) of the value
provided. This function is the inverse of the Exp10() function.

If the value of the argument provided is zero, the result is positive infinity. If the argument value is

negative, the result is NaN.

See Also Exp, Expl0, Log

132

LongJdmp

Type Subroutine

Invocation LongJdmp(jmpbuf, val)

Parameter Method Type Description

jmpbuf ByRef Array of Byte A buffer holding the return context, see description below.
val ByVval intl6 The value to be returned to the original SetJmp() caller.
Discussion

This subroutine, in conjunction with Set Jnp() , provides a way to circumvent the normal call-return
structure and return directly to a distant caller. It is the equivalent of a non-local Goto function and can be
used, among other purposes, to handle exceptions in your programs. The first parameter specifies a

Byt e array that has been previously initialized by a call to Set Jnp() . The second parameter specifies a

value that will be seen by the original Set Jnp() caller as the return value. This value, which should be
non-zero, can indicate the nature of the condition that led to the LongJnp() call. See the section on
Exception Handling in the ZBasic Reference Manual for more details.

Caution

Passing a jump buffer that has not been prepared by a call to Set Jnp() , one that has been modified
after the Set Jnp() call, or one that was prepared by a subroutine/function that is no longer active will
have unpredictable and almost certainly undesirable effects.

Compatibility

This routine is not available in BasicX compatibility mode.

See Also SetImp

133

LoWord

Type Function returning Unsignedinteger

Invocation LoWord(val)

Parameter Method Type Description

val ByVval numeric The value of which the low word is desired.
Discussion

This function returns the least significant word of the specified value. If the specified value is a Byte the
return value will have zero in the high byte.

Compatibility

This function is not available in BasicX compatibility mode.

See Also HiByte, HiWord, LoByte, MidWord

134

MakeDword

Type Function returning UnsignedLong

Invocation MakeDword(loWord, hiword)

Parameter Method Type Description

loword ByVval int16 The value for the low word of the double word value.
hiword ByVval int16 The value for the high word of the double word value.
Discussion

This function returns a value composed of the two word values.
Example

Dimwl as Unsi gnedl nteger, w2 as Unsi gnedl nt eger
Dim ul as UnsignedLong

ul = MakeDword(wl, w2)

Compatibility

This function is not available in BasicX compatibility mode.

See Also MakeWord

135

MakeString

Type Function returning String

Invocation MakeString(address, length)

Parameter Method Type Description

address ByVal intl6 The address of bytes with which to populate the string.
length ByVal int8/16 The number of characters to place in the string.
Discussion

This function populates a string with an arbitrary byte stream. It is most useful for composing or modifying
strings but may have other uses as well.

Example

Dim ba(1l to 10) as Byte

Dimi as Integer

Dims as String

For i = LBound(ba) to UBound(ba)
ba(i) = &H60 + CByte(i)

Next i
s = MakeString(MenAddress(ba), SizeO (ba))

Compatibility

This function is not available in BasicX compatibility mode.

136

MakeWord

Type Function returning Unsignedinteger

Invocation MakeWord(loByte, hiByte)

Parameter Method Type Description

loByte ByVal Byte The value for the low byte of the word value.
hiByte ByVval Byte The value for the high byte of the word value.
Discussion

This function returns a value composed of the two byte values.

Example

Dim bl as Byte, b2 as Byte
Dim u as Unsi gnedl nt eger

u MakeWbrd(bl, b2)

Compatibility

This function is not available in BasicX compatibility mode.

See Also MakeDword

137

Max

Type Function (see discussion for the return type)

Invocation Max(vall, val2)

Parameter Method Type Description

vall ByVval numeric One of two values of which the largest is desired.
val2 ByVval numeric One of two values of which the largest is desired.
Discussion

This function returns the larger of the two supplied values, both of which must be of the same type. If the
supplied values are signed, the determination of which is largest takes the sign of the values into account.
The return value is the same type as the parameters.

Compatibility

This function is not available in BasicX compatibility mode.

See Also Min

138

MemAddress

Type Function returning Integer

Invocation MemAddress(var)

Parameter Method Type Description

var ByRef any variable The variable of which the address is desired.
Discussion

This function returns the | nt eger representation of the RAM address of the specified variable. Note that
for arrays, you may also specify subscript expressions for all of the array dimensions to yield the address
of an individual array element. Without the subscript expressions, the resulting value will be the address
of the first element of the array.

This function is useful for deriving the address to pass to the several functions that require a RAM
address, e.g. BitCopy() , RanPeek() , RanPoke(), etc.

The address of any variable can also be obtained using the Dat aAddr ess property. For RAM-based
variables, the Dat aAddr ess property is of type Unsi gnedl| nt eger .

Example

Di m addr as | nteger
Dim ba(1l to 20) as Byte
Dim fval as Single

addr = MemAddress(fval)
addr = MenmAddr ess(ba)
addr = MemAddress(ba(2))
addr = fval . Dat aAddress
addr = ba. Dat aAddr ess
addr = ba. Dat aAddr ess(2)
Compatibility

BasicX only supports the DataAddress property for Program Memory data items.

See Also MemAddressU, VarPtr

139

MemAddressuU

Type Function returning Unsignedinteger

Invocation MemAddressU(var)

Parameter Method Type Description

var ByRef any variable The variable of which the address is desired.
Discussion

This function returns the Unsi gnedl nt eger representation of the RAM address of the specified
variable. Note that for arrays, you may also specify subscript expressions for all of the array dimensions
to yield the address of an individual array element. Without the subscript expressions, the resulting value
will be the address of the first element of the array.

This function is useful for deriving the address to pass to the several functions that require a RAM
address, e.g. BitCopy() , RanPeek() , RanPoke(), etc.

The Dat aAddr ess property may also be used to determine the address of a variable (except in BasicX
compatibility mode). The type of the resulting value is Unsi gnedl nt eger . See the examples below.

Examples

Di m addr as Unsi gnedl nt eger
Dim ba(1l to 20) as Byte
Dim fval as Single

addr = MemAddressU(fval)
addr = MemAddr essU(ba)

addr = MemAddressU(ba(2))
addr = ba. Dat aAddress

addr = ba. Dat aAddress(2)
See Also MemAddress, VarPtr

140

MemCmp

Type Function returning Integer

Invocation MemCmp(addrl, addr2, count)

Parameter Method Type Description

addrl ByVal integral The address of the first block of memory to be compared.
addr2 ByVal integral The address of the second block of memory to be compared.
count ByVal integral The number of bytes to compare.

Discussion

This function can be used to compare two arbitrary sequences of data in RAM. If all of the bytes in the
two blocks are the same (over the given number of bytes to compare) the value zero is returned.
Otherwise, the return value will be greater than zero if at the position of the first mismatch the byte in the
first block is greater than the corresponding byte in the second block. If the converse is true, the return

value will be less than zero.

All three parameters are converted internally to Unsi gnedl nt eger.

Example

Dimal(1l to 10) as Byte
Dim a2(1 to 10) as Byte
Dim ival as Integer

ival = MenCnp(al. Dat aAddress, a2.DataAddress,

Compatibility

This function is not available in BasicX compatibility mode.

See Also MemCopy, MemSet

141

SizeOf (al))

MemCopy

Type Subroutine

Invocation MemCopy(destination, source, count)

Parameter Method Type Description

destination ByVal integral The address to which to begin copying.
source ByVal integral The address from which to begin copying.
count ByVal integral The number of bytes to copy.
Discussion

This subroutine can be used to copy a block of data from one location in RAM to another location. An
overlapping copy (when the destination is in the midst of the data being copied) is handled correctly so
that the data to be copied is not overwritten.

All three parameters are converted internally to Unsi gnedl nt eger . Note that MenCopy() has the
same functionality as Bl ockMove() but has a different parameter order; one that you may be
accustomed to.

Caution
This subroutine should be used with care because it is possible to overwrite important data on the stack
or other areas of memory which may cause your program to malfunction.

Example

Dim ba(1l to 10) as Byte
Dimival as Integer

ba(3) = &H48
ba(4) = &H55
Call MemCopy(ival.Dat aAddress, ba(3).DataAddress, SizeO (ival))

After execution, i val will have the value &H5548. Note the use of the Si zeCf () function. This is a
better programming practice than using a specific value because it makes the code easier to maintain.

Compatibility

This routine is not available in BasicX compatibility mode.

See Also BitCopy, MemCmp, MemSet

142

MemSet

Type Subroutine

Invocation MemSet(addr, count, val)

Parameter Method Type Description

addr ByVal intl6 The address of a block to initialize.
count ByVval int8/16 The number of bytes to initialize.
val ByVal Byte The initialization value.
Discussion

This routine is useful for initializing arrays, buffers, etc. that reside in RAM.

Example

Dim ba(1l to 20) as Byte

Cal | Mentet (MemAddress(ba), Sizeof(ba), &H55)
Call Mentet (ba. Dat aAddress, Sizeof(ba), 0)
Caution

Using this routine to initialize data other than your own program variables may have detrimental effects.

Compatibility
This routine is not available in BasicX compatibility mode.

See Also MemCmp, MemCopy

143

Mid

Type Function returning String

Invocation Mid(str, pos, length) or
Mid(str, pos)

Parameter Method Type Description

str ByVval* String The string from which to extract or modify a substring.
pos ByVal int8/16 The position of the first character of the substring.
length ByVval int8/16 The length of the substring to extract or modify.

* When used on the left hand side of an assignment, this parameter is passed ByRef.

Discussion

This function can be used to extract a portion of a string or to modify a portion of a string, depending on
how it is used. When it appears in the context of a function call, it returns a new string extracted from the
string provided. The first character of the extracted substring will be the character at the position given by
pos (where the first character of the string is position 1). The length of the returned string will be the
number of characters in the source string beginning at the starting index through the end of the string or
the specified length (if present), whichever is less. If the starting position is beyond the end of the string
or if the specified length is less than or equal to zero, the returned string will be of zero length.

When used on the left hand side of an assignment operator, the M d() function replaces a sequence of
characters in a string with characters from the string value on the right hand side of the assignment
operator.

Dims as String
s = "abcdef"”
Md(str, 3) = "##" " result is "ab##ef"

Note that when used in this way the first parameter is passed by reference so it cannot be a literal string
or any other entity than cannot be passed by reference. Also, the length of the target string will never be
changed. The number of characters overwritten in the destination string will be the lesser of a) the
number of characters in the string on the right hand side of the assignment, b) the number of characters
specified in the third parameter (if present), and c) the number of characters in the target string beginning
at the position specified by the second parameter through the end of the string.

Compatibility

In BasicX, the first parameter is pass-by-reference. This disallows any use of a string literal for the first
parameter. Also, in BasicX the third parameter must always be provided.

The BasicX documentation suggests that using M d() on the left hand side of an assignment might result
in a change in the string length. Tests indicate that this is not the case. Moreover, execution of the code
fragment below actually results in a garbage character being placed in the third character position.

Dims as String

s = "abc"
Md(s, 2, 2) ="I" "result is "al@ (@is an indeterm nate character)

See Also Left, Right, Trim

144

MidWord

Type Function returning Unsignedinteger

Invocation MidWord(val)

Parameter Method Type Description

val ByVval numeric The value of which the middle word is desired.
Discussion

This function returns the middle two bytes of a 4-byte value. If the specified value is a Byte the return
value will be zero. If the specified value is contained in two bytes, the return value will have zero in the
high byte.

Compatibility

This function is not available in BasicX compatibility mode.

See Also HiByte, Hiword, LoByte, LoWord

145

Min

Type Function (see discussion for the return type)

Invocation Min(vall, val2)

Parameter Method Type Description

vall ByVval numeric One of two values of which the smallest is desired.
val2 ByVval numeric One of two values of which the smallest is desired.
Discussion

This function returns the smaller of the two supplied values, both of which must be of the same type. If
the supplied values are signed, the determination of which is smallest takes the sign of the values into
account. The return value is the same type as the parameters.

Compatibility

This function is not available in BasicX compatibility mode.

See Also Max

146

NoOp

Type Subroutine
Invocation NoOp()
Discussion

This subroutine implements a delay of one CPU cycle, typically about 68nS.

Compatibility

This function is only available for native code targets, e.g. the ZX-24n.

147

OpenCom

Type Subroutine

Invocation OpenCom(channel, baud, inQueue, outQueue)

Parameter Method Type Description

channel ByVval Byte The serial channel to open.

baud ByVal Long The desired baud rate.

inQueue ByRef array of Byte The queue for incoming characters.
outQueue ByRef array of Byte The queue for outgoing characters.
Discussion

This subroutine prepares a serial channel for use. If the specified channel is already open or if the
channel number is invalid, it has no effect. The supported channel numbers are 1, 2 and 3-6 but you
must have previously called ContChannel s() in order to use channels 4-6.

The supported baud rates for Com1 (channel 1) and Com2 are the standard rates from 300 to 460,800
while the supported rates for Com3 to Com6 (channels 3-6) range from 300 to 19,200. However, if
Conthannel s() has been invoked, the maximum rate for channels 3-6 will be limited to that specified in
the description of ContChannel s() . Moreover, for channels 3-6 the baud rate for any given channel
must be an integral divisor of the maximum rate.

The queues specified for the receive and transmit channels each must have been previously initialized by
calling OpenQueue() . If you set up a transmit-only or receive-only serial channel you may use the value
0 for the unused queue. If you provide the value 0 for both queues, the channel will not be opened.

Example

Di m out Queue(1l to 40) as Byte

Call OpenQueue(out Queue, SizeO (out Queue))
Cal | ContChannel s(2, 9600)

Cal |l DefineCon(4, 0, 12, &HO8)

Call OpenCon(4, 9600, 0, outQeue)

The code above prepares Com4 as a transmit-only serial channel. If you wanted reception as well, you
would have to declare and initialize a second queue and define the receive pin.

Resource Usage

The hardware UARTSs are assigned to channel numbers as shown in the table below.

Hardware UART Assignhment

ZX Model Coml Com2 Com7 Com8
ZX-24, ZX40, ZX-44, ZX-24e USARTO - - -
ZX-24a, ZX40a, ZX-44a, ZX-24ae USARTO - - -
ZX-24p, ZX-40p, ZX-44p USARTO USART1 - -
ZX-24n, ZX-40n, ZX-44n USARTO USART1 - -
ZX-1281, ZX-1281n USART1 USARTO - -
ZX-1280, ZX-1280n USARTO USART1 USART2 USART3
ZX-128e, ZX-1281e USARTO USART1 - -

148

It is important to note that on the ZX-24p and ZX-24n, the Com2 serial channel cannot be used at the
same time as the hardware 12C channel because the pin 11 is shared between the TxD pin of Com2 and
the SDA signal.

Com3 to Com6 are implemented as software UARTSs using the Serial Timer (see table below) to regulate
the bit timing. When one or more of the channels 3-6 are open the corresponding timer busy flag will be
True indicating that Serial Timer is in use. When all of the channels 3-6 are closed, corresponding timer
busy flag will again be False indicating that the Serial Timer is available for other uses.

Serial Timer by Device

ZX Model Serial Timer
ZX-24, ZX40, ZX-44, ZX-24e Timer2
ZX-24a, ZX40a, ZX-44a, ZX-24ae Timer2
ZX-24p, ZX40p, ZX-44p, ZX-24n, ZX-40n, ZX-44n Timer2
ZX-1281, ZX-1281n, ZX-1280, ZX-1280n, ZX-1281e Timer0
ZX-128e Timer2

For native code devices, the table below indicates which ISRs may be loaded by using OpenCom() in
your program. If the compiler cannot determine which specific channel is being opened, all of the listed
ISRs will be included.

ISRs Required
Underlying CPU Com Channel ISR Name

mega644pP Coml USARTO_RX, USARTO_TX, USARTO_UDRE
Com?2 USART1_RX, USART1_TX, USART1_UDRE
Com3-Com6 Ti mer 2_ConpA

megal28i Coml USART1_RX, USART1_TX, USART1_UDRE
Com?2 USARTO_RX, USARTO TX, USARTO_UDRE
Com3-Com6 Ti mer 0_ConpA

megal280 Coml USARTO_RX, USARTO_TX, USARTO_UDRE
Com?2 USART1_RX, USART1_TX, USART1_UDRE
Com7 USART2_RX, USART2_TX, USART2_UDRE
Com8 USART3_RX, USART3_TX, USART3_UDRE

Com3-Comé6 Ti mer 0_ConpA

Note, particularly, that the ISRs for Com1 are always included in every program even if OpenCom() is not
explicitly invoked.

Compatibility
In BasicX, the supported channel numbers are 1 to 3, depending on the particular target chip. Also,

BasicX doesn’t support the use of zero to indicate no queue is being supplied.

See Also ComChannels, CloseCom, DefineCom, StatusCom

149

Openl2C

Type Subroutine

Invocation Openl2C(channel, sdaPin, sclPin) or
Openl2C(channel, sdaPin, sclPin, bitRate)

Parameter Method Type Description

channel ByVval Byte The 12C channel to open (0-4).

sdaPin ByVval Byte The pin for the 12C data (SDA) signal.

sclPin ByVval Byte The pin for the 12C clock (SCL) signal.

bitRate ByVal integral The optional clock speed designation, see discussion.
Discussion

This subroutine prepares an 12C channel for use. Five channels are supported, numbered O through 4.
Channel zero uses the onboard hardware 12C controller while channels 1 through 4 are implemented in
software. The I12C implementation can only operate as a master and it does not support multi-master
arbitration. Slave clock stretching is supported on both hardware and software channels.

For channel 0, the sdaPi n and scl Pi n parameters are ignored since the hardware uses specific pins for
the SDA and SCL signals (Port C, bits 1 and 0, respectively). For channels 1-4, the sdaPi n and

scl Pi n parameters specify the pins to use for the data and clock signals, respectively. In both cases,
the clock and data pins are automatically configured for 12C operation. The 12C protocol requires pullup
resistors on both of the lines, the value of which depends on characteristics of your system. A typical
value is in the range of 1.5K to 4.7K.

The optional bi t Rat e parameter allows you to control the speed of the data interchange. If the

parameter is not given, the default speed is 100KHz. Each 12C device has a maximum clock rate at
which it will operate reliably; check the datasheet of your selected device to determine the maximum rate.

The interpretation of the value of the bi t Rat e parameter differs for channel 0 and for channels 1-4. The
tables below specify the values to use for several common clock speeds.

I2C Channel 0 Clock Speeds

bitRate Approximate
Value Clock Speed Notes
140 50KHz
66 100KHz Standard Low Speed, default speed
29 200KHz
11 388KHz Closest to Standard High Speed (400KHz)
10 410KHz Highest supported speed

I2C Channels 1-4 Clock Speedsl

bitRate Approximate
Value Clock Speed Notes
295 50KHz
148 100KHz Standard Low Speed, default speed
74 200KHz
59 250KHz Highest supported speed

* The values given assume the default setting of Regi st er . Ti ner Speed1.
For channel 0, the bi t Rat e parameter is a composite of two values: the value in the lower 8 bits is

known as BR and is written to the processor's TWBR register. The low two bits of the high byte select a
clock divisor according to the table below. The clock speed of the hardware channel is given by the

150

formula 14.7456MHz / (16 + 2 * BR * Divisor). If the bi t Rat e parameter is omitted or is zero the value of
66 is used by default.

Channel 0 Prescaler Selector Value

Value Divisor
0 1
1 4
2 16
3 64

For channels 1-4 the bi t Rat e parameter is interpreted as the number of I/O Timer ticks per bit. For 12C
operations, The I/O Timer uses the prescaler specified by Regi st er. Ti ner Speedl. With the default
prescaler of 1 each I/O Timer tick represents approximately 68nS. If the bi t Rat e parameter is omitted

or is zero the value of 74 is used by default. Due to processing overhead, the minimum attainable bit time
is approximately 4y S.

For channel 0, the table below gives the pin numbers used for SDA and SCL.

SDA and SCL Pins

ZX Models SDA SCL
ZX-24, ZX-24a, ZX-24p, ZX-24n 11,C.1 12,C.0
ZX-40, ZX-40a, ZX-40p, ZX-40n 23,C.1 22,C.0
ZX-44, ZX-44a, ZX-44p, ZX-44n 20,C.1 19, C.0
ZX-24e, ZX-24ae 11,C1 12,C.0
ZX-1281, ZX-1281n 26,D.1 25,D.0
ZX-1280, ZX-1280n 44,D.1 43,D.0
ZX-128e, ZX-1281e 11,D.1 12,D.0

Examples

Call Openl2C(0, 0, 0) ' open the hardware channel at 100KHz

Call Openl2C(2, 19, 20) ' open channel 2 using pins 19, 20

Call Openl2C(1, C.3, A1, 74) ' open channel 1 at 200KHz

Resource Usage

The I12C routines utilize the I/O Timer to regulate the bit timing for channels 1-4. While sending or
receiving 12C data, the corresponding timer busy flag will be True indicating that the I1/O Timer is in use.
On the ZX-24p and ZX-24n, the hardware 12C channel cannot be used while Com2 is open since pin 11
is shared by the SDA signal and TxD for Com2.

Compatibility

This subroutine is not available in BasicX compatibility mode.

See Also Closel2C, 12CGetByte, [12CPutByte, I2CStart, 12CStop, 12CCmd

151

OpenPWM

Type Subroutine

Invocation OpenPWM(channel, frequency, mode)

Parameter Method Type Description

channel ByVal Byte The channel to use for PWM generation.
frequency ByVal Single The desired PWM frequency.

mode ByVal Byte The desired PWM mode (see discussion below).
Discussion

This subroutine prepares a PWM channel for generating a pulse width modulated (PWM) signal. PWM

generation is performed using one of the CPU’s 16-bit timers, the number of which varies depending on
the ZX model. The table below indicates the available channels and the corresponding timer used. See
the description of PWM() for additional details on the PWM channels.

Supported PWM Channels

ZX Models Timerl Timer3 Timer4 Timer5
Channels Channels Channels Channels
ZX-24, ZX-24a, ZX-24p, ZX-24n, 1,2 - - -

ZX-40, ZX-40a, ZX-40p, ZX-40n,
ZX-44, ZX-44a, ZX-44p, ZX-44n,
ZX-24e, ZX-24ae

ZX-1281, ZX-1281n, 1,23 4,5,6 - -
ZX-128e, ZX-1281e
ZX-1280, ZX-1280n 1,23 4,5,6 7,8,9 10, 11, 12

The f r equency parameter specifies the PWM base frequency in Hertz. Since the same frequency and

generation mode will be used for all PWM channels based on the same timer, it is only necessary to call
OpenPWM) once to prepare the timer for all of the PWM channels that are based on a given timer.

The node parameter specifies the PWM generation mode. Two modes are supported: Fast PWM mode
and Phase/Frequency Correct mode. The constants zxFast PMWMand zxCor r ect PWM having the values
0 and 1 respectively, may be used to specify the mode. The Fast PWM mode has a maximum frequency
of one-half of the CPU clock frequency and is intended for fixed-frequency applications. The
Phase/Frequency Correct PWM mode has a maximum frequency of one-quarter of the CPU clock
frequency and may be used when the PWM frequency will be changed in the midst of PWM signal
generation. Frequency changes are effected by making additional calls to OpenPWW) and the change is
synchronized so that it takes effect at the beginning of a cycle.

A side effect of calling OpenPW\) is that the timer busy flag for the underlying timer (e.g.
Regi st er. Ti mer 1Busy) will be set to Tr ue irrespective of its prior state. It is recommended that the

initial call to OpenPWM) be preceded by a call to acquire the semaphore for the timer. This will ensure
that an existing timer operation will not be disturbed.

Example
Call OpenPWM 1, 50.0, zxFastPWW) 'prepare for 50Hz Fast PWM using channel 1
Compatibility

This subroutine is not available in BasicX compatibility mode.

See Also

152

ClosePWM, PWM

153

OpenQueue

Type Subroutine
Invocation OpenQueue(queue, size)

OpenQueue(queue)
Parameter Method Type Description
queue ByRef array of Byte The queue to be initialized.
size ByVal int16 The size of the array, in bytes.
Discussion

This routine prepares a queue for use by initializing the management information contained in the queue
data structure. The number of bytes of space available for data in a queue is the specified size less the
gueue management overhead (9 bytes). It may be convenient to use the built-in constant

Syst em M nQueuesSi ze in the definition of an array intended to hold a queue.

If the compiler can deduce the size of the array element, e.g. an explicitly dimensioned Byte array is
specified, the second parameter may be omitted. In the case, the compiler utilizes the size of the array
as the size parameter. Otherwise, the compiler will issue an error message indicating that the size must
be explicitly specified.

Caution

If you specify a size parameter that is larger than the actual size of the array, data following the array may

be overwritten, usually with undesirable consequences. For this reason, it is recommended that you use
the Si zeOF () function to specify the queue size so that it will automatically track any changes that you

make to the actual queue size. See the example below.
OpenQueue() should only be called for a queue that is not in use. Invoking it for a queue that is in use
has undefined results.

Example
DiminQueue(l to System M nQueueSi ze + 20) as Byte

Call OpenQueue(i nQueue, SizeO (i nQueue))

After the call to OpenQueue() the queue will ready to be used.

Compatibility

BasicX allows any type for the first parameter. This implementation requires that it be an array of Byt e.
The second parameter must be supplied in BasicX mode.

154

OpenSPI

Type Subroutine

Invocation OpenSPI(channel, flags, csPin)

Parameter Method Type Description

channel ByVval Byte The SPI channel to open (1-4).

flags ByVal Byte Flags controlling the SPI communication.
csPin ByVal Byte The pin for the chip select signal to the device.
Discussion

This subroutine prepares an SPI channel for use. Four channels are supported, numbered 1 through 4.
It does not matter if the particular channel has been previously opened. The f| ags parameter specifies
the characteristics of the SPI communication. They must be set to be compatible with the device with
which you want to communicate. See the table below for details. The csPi n parameter specifies the pin
number that you wish to control the device’s chip select input. The pin will be made an output and set to
the inactive (high) state.

SPI Channel Control Bits

Function Hex Value Bit Mask

Bit Rate f/4 &HOO XX XX xx 00
Bit Rate /16 &HO1 XX XX Xx 01
Bit Rate /64 &H02 XX XX XX 10
Bit Rate /128 &HO3 XX XX XX 11
Clock Phase False &HOO XX XX X0 XX
Clock Phase True &HO04 XX XX X1 XX
Clock Low at Idle &HO0 XX XX 0X XX
Clock High at Idle &HO8 XX XX 1X XX
Bit Order — MSB first &HO0 XX 0X XX XX
Bit Order — LSB first &H20 XX 1X XX XX
Double Speed &H80 1IX XX XX XX

The remaining bits are currently undefined but may be employed in the future. Bits 3 and 2 taken
together specify the SPI mode 0-3, e.g. xx xx 00 xx specifies mode 0.

Note that if the Double Speed bit is set, the SPI channel will run at twice the frequency specified by the
two low order flag bits. Also note that all SPI communications are in Master mode; Slave mode is not
supported.

Caution

For ZX devices that use an external SPI EEPROM for user program storage, you must avoid doing
anything that will interfere with the SPI commands to that device. SPI communication by direct
manipulation of the processor SPI control registers is not supported and may cause your program to
malfunction.

Compatibility

BasicX doesn’t support the double speed option.

See Also SPICmd

155

OpenWatchDog

Type Subroutine

Invocation OpenWatchDog(timeout)

Parameter Method Type Description

timeout ByVval Byte Specifies a timeout value (see discussion).
Discussion

This subroutine prepares the watchdog timer for use. Once it is opened, the Vat chDog() routine must
be called from time to time. If the period between Wat chDog() calls exceeds the timeout value, the
system will be reset.

The timeout value is 16.384 milliseconds times 2 to the N power where N is the value of the t i neout
parameter limited to the range shown in the table below. Note that the timeout value varies with

processor voltage. It is slightly longer at 3.0 volts than at 5.0 volts. Consult the Atmel documentation for
more specific information.

WatchDog Timeout Parameter Range

ZX Models Timeout Range Max. Time
ZX-24, ZX-40, ZX-44 0-7 2 sec
ZX-24a, ZX-40a, ZX-44a, 0-9 8 sec

ZX-24p, ZX-40p, ZX-44p,
ZX-24n, ZX-40n, ZX-44n

ZX-1281, ZX-1281n, ZX-1280, ZX-1280n 0-9 8 sec
ZX-24e, ZX-128e 0-7 2 sec
ZX-24ae, ZX-1281e 0-9 8 sec

When the processor is reset, the register value Regi st er . Reset Fl ags contains bit flags indicating the
source of the reset. It is important to note that the occurrence of a system fault (e.g. a stack overflow) will
also cause a WatchDog reset as will calling Reset Processor (). See the section on Run Time Stack
Checking in the ZBasic Reference Manual for more information on stack overflow detection.

The watchdog timer can be turned off using Cl oseWat chDog.

Compatibility

BasicX doesn't support Regi st er. Reset Fl ags or Cl oseWat chDog.

See Also WatchDog, CloseWatchDog, ResetProcessor

156

OpenX10

Type Subroutine

Invocation OpenX10(channel, inQueue, outQueue)

Parameter Method Type Description

channel ByVval Byte The X-10 communication channel to open.
inQueue ByRef array of Byte The queue for incoming X-10 data.

outQueue ByRef array of Byte The queue for outgoing X-10 data.

Discussion

This subroutine prepares an X-10 communication channel for use. After the channel is opened you can
send arbitrary X-10 command bit streams, which you must create in low-level form, by simply adding the
constitutent bytes to the outgoing queue. Similarly, the incoming queue will receive raw X-10 data which
you must decode. Each X-10 command begins with the bit sequence 1110 which is followed by
additional bit pairs. The bit pair 01 represents a logic zero while the bit pair 10 represents a logic one.
The bit pair 11 is invalid and the bit pair 00 signifies the end of a command bit stream and also represents
the idle condition. Additional information on X-10 commands may be found in various places on the
Internet.

If the specified channel is already open or if the channel number is invalid, it has no effect. The
supported channel numbers are 1-2. The channel must have been previously configured by a call to

Def i neX10(). Also, the queues specified for the receive and transmit channels each must have been
previously initialized by calling OpenQueue() . If you set up a transmit-only or receive-only serial channel
you may use the value 0 for the unused queue. If you provide the value O for both queues, the channel
will not be opened.

Example

Di m out Queue(1l to 40) as Byte

Cal | OpenQueue(out Queue, SizeO (out Queue))

Cal | Definex10(1, 0, 12, &HO08)

Call OpenX10(1, 0, outQeue)

The code above prepares channel 1 as for transmit-only operation. If you wanted reception as well, you
would have to declare and initialize a second queue and define the receive pin.

Resource Usage

X-10 communication requires the use of the Int0 line to which the X-10 zero-crossing signal must be

connected. When one or more of the X-10 channels are open any task that waits for IntO using
Wi t For | nt errupt () will be suspended indefinitely. When all X-10 channels are closed, IntO will

again be available for WAi t For I nt errupt () use.

For native code devices, the following ISRs are required.

ISRs Required

Underlying CPU ISR Name

mega644pP Ti mer 0_ConpB, | NTO
nmegalz8l Ti mer 2_ConpB, | NTO
nmegalz80 Ti mer 2_ConpB, | NTO

157

Compatibility
This subroutine is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-

24). Moreover, it is not available in BasicX compatibility mode.

See Also CloseX10, DefineX10, StatusX10

158

OutputCapture

Type Subroutine

Invocation OutputCapture(values, count, firstPulse)

Parameter Method Type Description

intervals ByRef array of int16 The lengths of successive segments of the output waveform.
count ByVval int16 The number of entries in the value array.

flags ByVal Byte Configuration bits controlling the generation process.
Discussion

This subroutine produces a series of precisely timed logic levels on the OutputCapture pin (see table
below) allowing you to produce an arbitrary waveform. Each entry in the i nt er val s array specifies a
time interval, in units of the I/O Timer period (by default, about 67.8ns), for each segment of the
waveform. When called, the OutputCapture pin will be made an output and will be set to its initial state
(the complement of the least significant bit of the f | ags parameter).

When waveform generation is begun, the OutputCapture pin will be changed to the opposite state for the
interval specified by the firsti nt er val s element, changed to the opposite state again for the interval
specified by the second i nt er val s element, etc. for as many elements as specified. The final state of
OutputCapture pin depends on whether the count parameter is odd or even. If it is odd the final state
will be the complement of the least significant bit of the f | ags parameter; if it is even the final state will
be the same as the least significant bit of the f | ags parameter.

The calling task will be suspended during the waveform generation process. If another task disables
interrupts the accuracy of the generated waveform may suffer.

Due to processing overhead, the smallest pulse width that can be accommodated is about 64 S. This
corresponds to a value of about 88 in the data array at the default timer speed. If the system has a heavy
interrupt load (e.g. serial channels 3-6 are open) the minimum pulse width for reliable operation may be
significantly larger. The maximum pulse width using the default timer speed is about 4.4mS. If you need
to generate longer pulse widths, you may set the value of Regi st er. Ti mer Speedl so that a slower
clock rate is used.

To avoid unwanted logic transitions on the OutputCapture pin during preparation for waveform
generation, the OutputCapture pin should be configured as an input prior to the call. You'll probably need
to employ a pullup or pulldown resistor on the pin to guarantee the desired logic state prior to the
commencement of waveform generation.

Resource Usage
This routine uses the I/0 Timer. If the timer is already in use the routine will return immediately without

performing the waveform generation. Also, this routine cannot be used at the same time as
| nput Capt ure(). See the description of OutputCaptureEx() for information about ISR requirements.

159

Output Capture Pin
ZX Models Pin
ZX-24, ZX-24a, ZX-24p, ZX-24n 27,D.A4
ZX-40, ZX-40a, ZX-40p, ZX-40n 18,D.4
ZX-44, ZX-44a, ZX-44p, ZX-44n 13,D.4

ZX-24e, ZX-24ae 16,D.4
ZX-1281, ZX-1281n 25,B.6
ZX-1280, ZX-1280n 16, B.6
ZX-128e, ZX-1281e 22,B.6

Compatibility

Since the CPU runs at twice the rate as the BasicX CPU, the units of the pulse width are half as long. If
you need to generate longer pulse widths, you may set the value of Regi st er. Ti ner Speedl so that a
slower clock rate is used. Also, the BasicX documentation indicates that if the I/O Timer is already in use,
that use will be terminated and the waveform generation will be performed.

See Also OutputCaptureEx()

160

OutputCaptureEkx

Type Subroutine

Invocation OutputCaptureEx(pin, intervals, count, flags)
OutputCaptureEx(pin, intervals, count, flags, repeatCount)

Parameter Method Type Description

pin ByVal Byte Specifies the waveform output pin.

intervals ByRef array of int16 The lengths of successive segments of the output waveform.
count ByVal any int The number of entries in the i nt er val s array (1-65535).
flags ByVal Byte Configuration bits controlling the generation process.
repeatCount ByVal any int The number of times to repeat the pattern (1-65535).
Discussion

This subroutine produces a series of precisely timed logic levels on the specified pin allowing you to
produce an arbitrary waveform. Each entry in the i nt er val s array specifies a time interval, in units of
the I/O Timer clock period (by default, about 67.8ns), for each segment of the waveform. When called,
the specified pin will be made an output and will be set to its initial state (the complement of the least
significant bit of the f | ags parameter).

When waveform generation is begun, the specified pin will be changed to the opposite state for the
interval specified by the firsti nt er val s element, changed to the opposite state again for the interval
specified by the second i nt er val s element, etc. for as many elements as specified. The final state of
the output pin depends on whether the count parameter is odd or even. If it is odd the final state will be
the complement of the least significant bit of the f | ags parameter; if it is even the final state will be the
same as the least significant bit of the f | ags parameter.

If the optional r epeat Count parameter is not given a repeat count of 1 is assumed. If the repeat count
is 1 thei nt erval s array should generally have an odd number of values. This allows the output to end
in the same state as it started. If the repeat count is greater than one the i nt er val s array should
generally have an even number of values. This allows the output waveform to repeat at the same logic
levels. Also, when the waveform is repeated the last interval of the last cycle is omitted so that the output
ends up in the same state as it started.

The calling task will be suspended during the waveform generation process. If another task disables
interrupts, the accuracy of the generated waveform will suffer.

Due to processing overhead, the smallest pulse width that can be accommodated is about 6.84S. This
corresponds to a value of about 100 in the data array at the default timer speed. If the system has a
heavy interrupt load (e.g. serial channels 3-6 are open) the minimum pulse width for reliable operation
may be significantly larger. The maximum pulse width using the default timer speed is about 4.4mS. If
you need to generate longer pulse widths, you may set the value of Regi st er. Ti ner Speedl so that a

slower clock rate is used.

To avoid unwanted logic transitions on the output pin during preparation for waveform generation, the
output pin should either be configured as an input or as an output in the desired starting state prior to the
call. If you configure it as an input you'll probably need to employ a pullup or pulldown resistor on the pin
to guarantee the desired logic state prior to the commencement of waveform generation.

Although this subroutine can be invoked specifying the hardware OutputCapture pin (see the table below)
or any other I/O pin, the behavior when using a general I/O pin may be slightly different than when using
the hardware OutputCapture pin. The hardware OutputCapture pin uses features of the hardware to
toggle the 1/0 pin while for general 1/0 pins the pin is toggled in software by directly setting the
corresponding PORTX bit. During periods of high interrupt load the hardware toggling will be more
accurate.

161

Resource Usage

This routine uses the 1/0 Timer. If the timer is already in use the routine will return immediately without
performing the waveform generation. Also, this routine cannot be used at the same time as

I nput Capt ure() orl nput Capt ur eEx() that requires the same timer.

Hardware Output Capture Pin

ZX Models Timer 1 Pin Timer 3 Pin Timer 4 Pin Timer 5 Pin
ZX-24, ZX-24a, ZX-24p, ZX-24n 27,D.4 - - -
ZX-40, ZX-40a, ZX-40p, ZX-40n 18,D.4 - - -
ZX-44, ZX-44a, ZX-44p, ZX-44n 13,D.4 - - -
ZX-24e, ZX-24ae 13,D.4 - - -
ZX-1281, ZX-1281n 16, B.6 6, E.4 - -
ZX-1280, ZX-1280n 25, B.6 6, E.4 16, H.4 39,L4
ZX-128e, ZX-1281e 22, B.6 16, E4 - -

When performing an output capture on a general 1/0O pin, Timerl will be used to generate the required
timing. On ZX devices that have Timer3, it will be used if Timerl is not available. If neither timer is
available, the routine will return immediately.

For native code devices, the table below gives the ISRs that may be loaded if your program uses
OutputCapture(). If the compiler cannot determine which specific timer ISR is required by analyzing the
parameters used, all listed ISRs will be included.

ISRs Required

Underlying CPU ISR Name
mega644pP Ti mer 1_ConpB
megal28l Ti mer 1_ConpB,

Ti mer 1_ConpC,
Ti mer 3_ConpB
nmegal280 Ti mer 1_ConpB,
Ti mer 1_ConmpC,
Ti mer 3_ConpB,
Ti mer4_ConpB
Ti mer 5_ConmpB

Compatibility

This routine is not available in BasicX compatibility mode.

162

ParityCheck

Type Function returning Boolean

Invocation ParityCheck(data, oddParity)

Parameter Method Type Description

data ByVal Byte The data value for which to check the parity.

oddParity ByVal Boolean The desired parity: True -> odd parity, False -> even parity
Discussion

This function computes the parity over the eight bits of the provided data value and compares that result
to the desired result indicated by the oddPar i t y parameter. The return value is a pass/fail indicator
where True means that the parity matched the desired parity.

The data value has even parity if the number of one bits in the value is even.

Example
Dimb as Byte
If Not ParityCheck(b, False) Then
Debug. Print "Even parity check failed"
End If
Compatibility

This routine is not available in BasicX compatibility mode.

163

Pause

Type Subroutine

Invocation Pause(time)

Parameter Method Type Description

time ByVal Single or int16 The amount of time to pause, in seconds
(Single) or Timer 0 ticks (int16)

Discussion

This routine suspends execution of the current task for approximately the period of time specified. No
other task is allowed to run during the pause period. The resolution of the time period is approximately
4.34) S with a maximum pause time of about 284mS. Note that the accuracy of the pause may be
affected by the time required for the processor to service interrupts (RTC, serial channel, etc.). Also note
that the resolution of the pause is similar to the minimum execution time for user instructions. This means
that timing using Pause() calls of less than 20 to 50 units or so will be affected significantly by the
succeeding instructions.

This routine should be used instead of SI eep() or Del ay() when higher resolution timing is required or
you don’t want a task switch to occur. If you need longer pauses than can be produced by this routine,
you can implement them using Regi st er . RTCSt opWat ch.

Example
Do
Call PutPin(12, 0)
Call Pause(0.010) ' a 10 mllisecond del ay
Call PutPin(12, 1)
Call Pause(2304) ' a 10 nillisecond del ay

Loop
This loop produces a square wave signal on pin 12 at approximately 50Hz (with some jitter due to

handling interrupts).

Compatibility

This routine is not available in BasicX compatibility mode.

See Also Delay, DelayUntilClockTick, Sleep, WaitForinterval

164

PeekQueue

Type Subroutine

Invocation PeekQueue(queue, var, count)

Parameter Method Type Description

gqueue ByRef array of Byte The queue from which to retrieve data.
var ByRef any type The variable to receive the retrieved data.
count ByVal intl6 The number of bytes to retrieve.
Discussion

This routine will copy the specified number of bytes from the queue to the indicated variable but it does
not remove them from the queue. The routine will not return until it can copy the entire number of bytes
specified. Because of this, you should usually check the number of bytes available in the queue using
Get QueueCount () before calling PeekQueue() .

Note that if the calling task is locked and the queue contains insufficient data when this routine is called,
the task will be unlocked to allow other tasks to run.

Caution
If the requested number of bytes is larger than the queue capacity, the routine will never return. Likewise,
if not enough data is placed in the queue, the routine will never return. Also, if the variable to receive the

data is smaller than the number of bytes indicated, adjacent memory will be overwritten, usually with
undesirable results.

Example

Compatibility

BasicX allows any type for the first parameter. This implementation requires that it be an array of Byt e.

165

PersistentPeek

Type Function returning Byte

Invocation PersistentPeek(address)

Parameter Method Type Description

address ByVal intl6 The persistent memory address from which to read.
Discussion

This function will return the content of the specified persistent memory address.

The address of any persistent variable can also be obtained using the Dat aAddr ess property. For
persistent variables, the Dat aAddr ess property is of type Unsi gnedl nt eger .

Example

m pi as Persistentlnteger

b as Byte

Per si st ent Peek(1000)

Per si st ent Peek(pi . Dat aAddress + 1)

nn 3

The second use of Per si st ent Peek() demonstrates how you can use the Dat aAddr ess property to
read a byte value from any part of a persistent variable of any type.

Compatibility
BasicX does not support the use of the Dat aAddr ess property for persistent items.

The BasicX system has only 512 bytes of persistent memory. This implementation has 1024 bytes of
persistent memory of which the first 32 are reserved for system use.

See Also PersistentPoke

166

PersistentPoke

Type Subroutine

Invocation PersistentPoke(value, address)

Parameter Method Type Description

value ByVal Byte The to write to persistent memory.

address ByVal intl6 The persistent memory address to which to write.
Discussion

This routine will write the given value to the specified persistent memory address.

The address of any persistent variable can also be obtained using the Dat aAddr ess property. For
persistent variables, the Dat aAddr ess property is of type Unsi gnedl nt eger .

Caution

The first 32 bytes of persistent memory are reserved for the system. Modifying any of them may produce
unpredictable results.

The persistent memory (on-board EEPROM) has a limit specified by the manufacturer of a million write
cycles. When this limit is exceeded the memory may become unreliable.

Example

Dim pi as Persistentlnteger

Cal | Persistent Poke(&H55, 1000)

Cal | Persistent Poke(&H55, pi.DataAddress + 1)

The second use of Per si st ent Poke() demonstrates how you can use the Dat aAddr ess property to
write a byte value to any part of a persistent variable of any type.

Compatibility

BasicX does not support the use of the Dat aAddr ess property for persistent items.

The BasicX system has only 512 bytes of persistent memory. This implementation has 1024 bytes of

persistent memory of which the first 32 are reserved for system use.

See Also PersistentPeek

167

PlaySound

Type Subroutine

Invocation PlaySound(pin, address, length, rate, repeat)

Parameter Method Type Description

pin ByVal Byte The output pin.

address ByVal intl6 The EEPROM address of the sound data.
length ByVal intl6 The number of bytes of sound data.

rate ByVal intl6 The sample rate for the sound data.
repeat ByVal intl6 The number of times to repeat the sound.
Discussion

This routine uses a pseudo-PWM technique to create an approximation to a sine wave on the specified
output pin. The frequency of the sine wave is given by successive bytes in EEPROM (user program
memory) beginning at the specified address and continuing for the given length. The r at e parameter
specifies the rate at which the data elements will be utilized. It is equivalent to the sample rate at which
an original analog sound might have been digitized. Lastly, the repeat parameter tells how many times to
repeat the production of the output using the supplied data. If zero is specified, the sound will be
repeated 65,536 times.

The minimum supported sample rate is 250Hz. If a smaller value is specified, 250Hz will be used instead.

The actual output will be a pulse stream that has an average value that approximates the target analog
signal. Because of the high frequency nature of the pulse train used to synthesize the waveform some
filtering is required. The example circuit below may be used to couple the output to a high impedance
speaker (> 40Q) or an amplifier. Note, however, that the signal is too large to be fed to the microphone
input of an amplifier. Instead, the Auxiliary or Line input should be used.

1@uF
Fram | f
I-0 Pin O I\ O Ta amplifier or
s high impedance
18uF speaker

Resource Usage
This routine uses the I/0 Timer and disables interrupts during the generation process. In particular, this

means that serial input that arrives during the generation will likely be missed and serial output on
channels 3-6 will be disrupted.

168

Task switching is suspended and other interrupts are disabled while the sound is being produced.
However, RTC ticks are accumulated during the process and the RTC is updated when the process has
completed so that the RTC does not lose time.

Example

Di m musi ¢ as ByteVectorData("sound.txt")
Call PlaySound(12, LoWord(music. DataAddress), UBound(music), 11025, 1)

This example assumes that you have prepared the file “sound.txt” to contain the digitized music, sampled
at 11025Hz.

Compatibility

The BasicX documentation for Pl aySound() does not explicitly indicate that a zero repeat count will
result in 65,536 iterations. However, experimental evidence indicates that it does.

In the BasicX implementation the RTC will lose time if the duration is too long. It is not known if the
BasicX implementation has a minimum sample rate.

169

PortBit

Type Function returning Byte
Invocation PortBit(portldx, bitldx)
PortBit(pin)
Parameter Method Type Description
portldx ByVal integral The 1/0O port designator (A=0, B=1, etc.)
bitldx ByVal integral The bit designator (0-7)
pin ByVal integral A pin number

Discussion

This function returns a composite value that describes a specific bit in a specific /0 port. The fields of the
Byte value are as shown in the table below.

Bit(s) Description

7 Always 1
6-3 The 1/O port designator (A=0, B=1, etc.)
2-0 The bit designator (0-7)

When invoked in the first form with the parameter values 2 and 6 (representing Port C, bit 6) the return
value will have the bit pattern &B10010110.

The second form of invocation converts a physical pin number to the composite value representing the
port and bit corresponding to that pin. When passed an invalid pin, the return value is zero.

Values returned by the PortBit() function may be used anywhere that a pin number may be used, e.g. as
the first parameter to PutPin(). The primary advantage to using the composite port/bit designator is that
the same value may be used unchanged on any ZX device.

Note that the special port/bit designators like C. 2 are converted by the compiler to the same type of
composite port/bit designator described here if the compiler directive Opti on Port Pi nEncodi ng On is
specified.

Compatibility

This function is not available in BasicX compatibility mode.

170

Pow

Type Function returning Single

Invocation Pow(mantissa, exponent)

Parameter Method Type Description

mantissa ByVal Single The value to be raised to the power given by the exponent.
exponent ByVal Single The exponent value.

Discussion

This function returns the value of the first parameter raised to the power given by the second parameter.
This is the same functionality as provided by the exponentiation operator .

Certain special cases are detected as shown in the table below.

Mantissa Exponent Result
any value 0.0 1.0
negative non-integral value NaN
0.0 Negative +Infinity

Example

Dmr as Single, f as Single

f = 10.0
r = Pow(f, 2.0) " result is 100.0
See Also Exp, Expl0

171

Pulseln (subroutine form)

Type Subroutine

Invocation Pulseln(pin, level, var)

Parameter Method Type Description

pin ByVal Byte The pin on a pulse width will be measured.
level ByVal Byte The expected pulse logic value (high = 1).
var ByRef Single The variable to receive the pulse width value.
Discussion

This routine waits for the input pin to be in the idle state (the opposite of that specified by the | evel
parameter), waits for it to change to the specified logic level and then measures the time that it stays at
that level. The pulse width is stored in the specified variable and has units of seconds with a default
resolution of approximately 1.085us.

The pin is made an input if it is not already so. If the awaited logic transition never occurs or if the pulse
width exceeds the maximum representable width the stored result will be zero.

The timing resolution may be adjusted using Regi st er. Ti mer Speed2. However, if this is done, the
resulting pulse width value will need to be scaled proportionally. Note that for compatibility with BasicX,
the timing resolution is one half of the period of the selected I/O Timer frequency.

Resource Usage

This routine uses the 1/0 Timer and interrupts are disabled during the pulse measurement. However,
RTC ticks will be accumulated during the pulse measurement and the RTC will be updated when the
process is complete.

Example

Dmw dth as Single

Call Pulseln(12, 1,w dth) ' neasure a positive-going pulse

Compatibility

The BasicX implementation does not support adjustable timing resolution.

172

Pulseln (function form)

Type Function returning Integer

Invocation Pulseln(pin, level)

Parameter Method Type Description

pin ByVal Byte The pin on a pulse width will be measured.
level ByVal Byte The expected pulse logic value (high = 1).
Discussion

This routine waits for the input pin to be in the idle state (the opposite of that specified by the | evel
parameter), waits for it to change to the specified logic level and then measures the time that it stays at
that level. The width of the pulse is returned by the function, the units of which are 2 times the I/O Timer
period. At the default I/O Timer clock period of 0.54) S, the returned value has units of 1.08) S.

The pin is made an input if it is not already so. If the awaited logic transition never occurs or if the pulse
width exceeds the maximum representable width the returned value will be zero.

The timing resolution may be adjusted using Regi st er. Ti mer Speed2. Note that for compatibility with
BasicX, the timing resolution is one half of the period of the selected I/O Timer frequency.

Resource Usage

This routine uses the 1/0 Timer and interrupts are disabled during the pulse measurement. However,

RTC ticks will be accumulated during the pulse measurement and the RTC will be updated when the
process is complete.

Example
Dim wi dth as | nteger

i = Pulseln(12, 1) ' measure a positive pulse

Compatibility

The BasicX implementation does not support adjustable timing resolution.

173

PulseOut

Type Subroutine

Invocation PulseOut(pin, duration, level)

Parameter Method Type Description

pin ByVal Byte The pin on which a pulse width will be generated.
duration ByVal intl6 or Single The width of the generated pulse.

level ByVal Byte The desired pulse logic value (low = 0, high = 1).
Discussion

This routine first makes the specified pin an output. (However, for practical purposes, you should
generally make the pin an output and set it to the desired state before calling this routine.) Then it sets
the pin to the active state (as indicated by the | evel parameter), waits the specified time and then sets
the pin back to the inactive state. The pin will be left configured as an output.

The pulse width may be specified by a Single value with units of seconds and a resolution of
approximately 1.085us (however, due to processing overhead, the shortest pulse that can be generated
is slightly less than 2us). Alternately, the pulse width may be specified by an Integer or Unsignedinteger
value with units of 2 x I/O Timer ticks (by default, 1.085us). Note, however, that Register.TimerSpeed2
may be modified to adjust the 1/O Timer tick rate. If this is done, the Single value will have to be scaled
proportionally.

If the output pin is specified as zero, this routine does not generate a pulse but will delay for
approximately the specified period of time. This may be useful for generating a delay with better

precision than can be obtained by using Del ay() or Sl eep(). Moreover, generating a delay in this
manner does not cause the task to lose control.

Resource Usage

This routine uses the 1/0 Timer and interrupts are disabled during the pulse generation. However, RTC
ticks will be accumulated during the pulse generation and the RTC will be updated when the process is
complete. If the pulse is too long characters being sent or received on serial channels 3-6 may be
garbled. See the

Example

Dim wi dth as Integer

Call PutPin(12, zxCQutputLow)

Call PulseOut(12, 2, 1) " generate a positive pulse about 2uS long

Call PulseCQut(0, 1le-5, 0) = generate a delay of about 10uS

Compatibility

In the BasicX implementation the RTC will lose time if the pulse is too long.

The BasicX implementation does not support adjustable timing resolution.

174

PutlWire

Type Subroutine

Invocation PutlWire(pin, value)

Parameter Method Type Description

pin ByVal Byte The pin to be used for 1-Wire 1/0.
value ByVal Byte The bit value to write.
Discussion

This routine sends the LSB of the given value using the 1-Wire protocol. To perform a 1-Wire operation,
this function along with related 1-Wire routines must be used in the proper sequence. See the
specifications of your 1-Wire device for more information.

Resource Usage

This routine uses the 1/0 Timer and disables interrupts for about 100y S.

Example

Call PutlWre(12, 1)

See Also GetlWire, GetlWireByte, GetlWireData,
PutlWireByte, PutlWireData, Reset1Wire

175

PutlWireByte

Type Subroutine

Invocation PutlWireByte(pin, value)

Parameter Method Type Description

pin ByVal Byte The pin to be used for 1-Wire 1/0.
value ByVal Byte The value to write.

Discussion

This routine sends a byte (LSB first) using the 1-Wire protocol. To perform a 1-Wire operation, this
function along with related 1-Wire routines must be used in the proper sequence. See the specifications
of your 1-Wire device for more information.

Example

Call Put1WreByte(12, &H55)

Resource Usage

This routine uses the I/O Timer and disables interrupts for about 100y S for each bit sent.

Compatibility

This routine is not available in BasicX compatibility mode.

See Also GetlWire, GetlWireByte, GetlWireData,
PutlWire, PutlWireData, Reset1Wire

176

PutlWireData

Type Subroutine

Invocation PutlWireData(pin, data, count)

Parameter Method Type Description

pin ByVal Byte The pin to be used for 1-Wire 1/0.
data ByRef any type A variable holding the bytes to write.
count ByVal Byte The number of bytes to write.
Discussion

This routine sends 1 or more bytes of data (each LSB first) using the 1-Wire protocol. To perform a 1-
Wire operation, this function along with related 1-Wire routines must be used in the proper sequence.
See the specifications of your 1-Wire device for more information.

Example
Dimd(1l to 10) As Byte

Call PutlWreData(12, d, 5)

Resource Usage

This routine uses the 1/0 Timer and disables interrupts for about 100y S for each bit sent.

Compatibility

This routine is not available in BasicX compatibility mode.

See Also GetlWire, GetlWireByte, GetlWireData,
PutlWire, PutlWireByte, ResetlWire

177

PutBit

Type Subroutine

Invocation PutBit(var, bitNumber, val)

Parameter Method Type Description

var ByRef any type The variable to which the bit will be written.
bitNumber ByVal int8/16 The bit number to write.

val ByVal Byte The bit value.

Discussion

This routine writes a single bit to memory beginning at the location of the specified variable. Bit numbers
0-7 are written to the byte at the specified location, bit numbers 8-15 are written to the subsequent byte,
etc. In each case, the lower bit number corresponds to the least significant bit of the byte while the
highest bit number corresponds to the most significant bit of a byte.

Only the least significant bit of the val parameter is used; the remaining bits are ignored.
Caution
If you specify a bit number beyond the number of bits in the specified variable, a byte in memaory following

the variable will be modified, perhaps with undesirable results.

Compatibility

In BasicX compatibility mode, the bi t Nunber parameter may only be specified using a Byt e value.

See Also GetBit

178

PutDAC

Type Subroutine

Invocation PutDAC(pin, dacValue, dacAccumulator)
PutDAC(pin, dacValue, dacAccumulator, cycles)

Parameter Method Type Description

pin ByVal Byte The output pin.

dacValue ByVval numeric The desired output value. See discussion below.

dacAccumulator ByRef Byte A value used in the DAC process. See the
discussion below.

cycles ByVval Byte The number of PWM cycles to perform.

Discussion

This routine creates a digital approximation of an analog signal on the specified pin using a pseudo-PWM
technique. When called, the specified pin is made an output, a pulse train is generated having an
average value equal to the dacVal ue parameter and then, after a fixed number of iterations, the pin is
placed in the high impedance input state. If the output is filtered with a low pass filter, the voltage will,
immediately after the process is completed, be at a level between zero and the processor voltage (usually
+5 volts). However, the voltage will begin to decay at a rate dependent on the load presented to the filter.
The voltage can be refreshed from time to time by calling Put DAC() again.

The dacVal ue parameter may be specified by a Si ngl e value or an integral value. If a Si ngl e value is
supplied, it should be in the range 0.0 to 1.0 corresponding to the output range of 0 to the processor
voltage (usually +5 volts). If an integral value is supplied, it should be in the range of 0 to 255
corresponding to the same output voltage range as above.

The dacAccurul at or parameter is required to ensure continuity between successive calls to

Put DAC() . The value of the parameter after the call should not be modified and the same parameter
should be supplied on the next call. The initial value of the parameter is of no consequence. If your
application uses Put DAC() to create an analog voltage on more than one pin at a time, a separate
accumulator value must be used for each one.

If the cycl es parameter is not specified, a single PWM cycle is performed. Each cycle will generate a
burst of pulses for about 200y S during which time interrupts will be disabled. At the end of each cycle,
the pin is put in high impedance mode and interrupts are re-enabled. The process is then repeated if the
cycle count is greater than one. A cycle count of zero causes no cycles to be performed.

The selection of components for the required filter depends on several factors. A larger capacitor will
allow the voltage to hold longer but also takes longer to bring up to the proper voltage. As a rule of
thumb, the product of the resistance (in ohms) and the capacitance (in farads) should be on the order of
the number of cycles times 504 S. For example, with a 100Q resistor and a 1yF capacitor, the cycle count
should probably be 2 in order to bring the capacitor up to the desired voltage level.

For best results, you should probably follow the filter with a high impedance buffer such as a unity gain op

amp circuit, an example of which is shown below. The op amp chosen is not particularly critical, nearly
any will do the job.

179

LM358 out

Examples
Dim acc as Byte
Call PutDAC(12, 0.5, acc)

Call Put DAC(12, 128, acc, 5)

Compatibility

In BasicX compatibility mode, the dacVal ue parameter may only be specified using a Si ngl e value.
Also, the fourth parameter is not supported.

Resource Usage

This routine disables interrupts for about 200y S during the generation process. Interrupts are reenabled

between each successive cycle.

See Also DACPIn

180

PutDate

Type Subroutine

Invocation PutDate(year, month, day)

Parameter Method Type Description

year ByVal intl6 The year value (1999-2177).
month ByVal Byte The month value (1-12).

day ByVal Byte The day value (1-31).
Discussion

This routine composes a new value for Regi st er . RTCDay using the provided parameters. The month
value of 1 corresponds to January while 12 corresponds to December. If the year or month is invalid or if
the day number is invalid for the specified month and year, Regi st er . RTCDay will be set to zero.

Note that Regi st er . RTCDay is initialized to zero on power-up or reset. This corresponds to January 1,
1999.

See Also GetDate

181

PuteEEPROM

Type Subroutine

Invocation PutEEPROM(addr, var, count)

Parameter Method Type Description

addr ByVal Long The Program Memory address at which to begin writing.
var ByRef any type The variable from which the data to be written will be taken.
count ByVal intl6 The number of bytes to write.

Discussion

This routine is provided for compatibility with BasicX. The more aptly named PutProgMem() should be
used by new applications.

See Also GetProgMem, PutProgMem

182

PutNibble

Type Subroutine

Invocation PutNibble(var, nibbleNumber, val)

Parameter Method Type Description

var ByRef any type The variable to which the nibble will be written.
nibbleNumber ByVal int8/16 The nibble number to write.

val ByVal Byte The nibble value.

Discussion

This routine writes a single nibble (four bits) to memory beginning at the location of the specified variable.
Nibble numbers 0-1 are written to the byte at the specified location, nibble numbers 2-3 are written to the
subsequent byte, etc. In each case, the lower nibble number corresponds to the least significant four bits
of the byte while the higher nibble number corresponds to the most significant four bits of the byte.

Only the least significant four bits of the val parameter is used; the remaining bits are ignored.
Caution
If you specify a nibble number beyond the number of nibbles in the specified variable, a byte in memory

following the variable will be modified, perhaps with undesirable results.

Compatibility

This routine is not available in BasicX compatibility mode.

See Also GetNibble

183

PutPersistent

Type Subroutine

Invocation PutPersistent(addr, var, count)

Parameter Method Type Description

addr ByVal intl6 The Persistent Memory address to which to write.
var ByRef any type The variable from which data will be taken.

count ByVal int8/16 The number of bytes to write.

Discussion

This routine reads one or more bytes from RAM and writes them to Persistent Memory beginning at the
address given.

Caution

Persistent Memory has a write cycle limit of approximately a million writes. Writing to a particular address
in excess of this limit may cause the memory to become unreliable.

A block of Persistent Memory starting at address zero is reserved for system use. When the compiler
assigns addresses to persistent variables defined in your program, the lowest address used is the first
address above this reserved block. The .map file generated by the compiler contains a section indicating

the addresses assigned to persistent variables defined in your program. The built-in values
Regi ster. Persistent Start, Regi ster. Persi stent Si ze and Regi st er. Persi st ent Used

may be useful for determining the allocated an unallocated portions of Persistent Memory.
This routine will write to any address in Persistent Memory. Generally, you should avoid writing to the
reserved area of Persistent Memory.

Example

Dim pvar(1 to 10) as PersistentByte
Dmvar(1l to 10) as Byte
Call PutPersistent (pvar. Dat aAddress, var, SizeO (pvar))

Compatibility

This routine is not available in BasicX compatibility mode.

See Also GetPersistent

184

PutPin

Type Subroutine

Invocation PutPin(pin, mode)

Parameter Method Type Description

pin ByVal Byte The pin to configure.

mode ByVal Byte The configuration mode (see below).
Discussion

This routine is used to configure a pin to be an input or an output or to effect a change in the output logic
level. If the pin is configured as an input, it may be configured to be in “tri-state” mode or “pull-up” mode.
If the pin is configured to be an output, the output level may be set to zero or 1. The table below gives the
values for each of the possible modes. If an invalid mode is specified or an invalid pin is specified, the
routine has no effect.

Values for the node Parameter

Value Built-in Constant Description

0 zxQut put Low The pin is an output at logic zero.

1 zxQut put Hi gh The pin is an output at logic one.

2 zxInputTri State The pin is an input with the pull-up resistor disabled.
3 zx| nput Pul | Up The pin is an input with the pull-up resistor enabled.
4 zxCQut put Toggl e Change the logic level of the output.

5 zxQut put Pul se Pulse the output.

Note that for modes 4 and 5 to be useful, the pin must have been previously set to be an output. Mode 4
(zxQut put Toggl e) will change the output to the opposite logic level. Mode 5 (zxQut put Pul se) will
change the output to the opposite level for a short period of time and then change it back to the original
level. The duration of the pulse will be about 8 CPU cycles (approximately 0.5uS at 14.7456MHz).

Example
Call PutPin(12, zxQutputLow) ' pin 12 will be at logic zero
See Also GetPin

185

PutProgMem

Type Subroutine

Invocation PutProgMem(addr, var, count)

Parameter Method Type Description

addr ByVal Long The Program Memory address to which to begin writing.
var ByRef any type The variable from which the data to be written will be taken.
count ByVal intl6 The number of bytes to write.

Discussion

This routine writes one or more bytes to Program Memory (where the user program is stored) taking the
data from RAM beginning at the location of the specified variable. Note that if a number of bytes is
specified that is larger than the given variable, adjacent memory will be read.

Caution
Program Memory has a write cycle limit specified by the manufacturer of a million cycles. Writing to a

particular address in excess of this limit may result in unreliable operation.

See Also GetProgMem

186

PutQueue

Type Subroutine

Invocation PutQueue(queue, var, count)

Parameter Method Type Description

gqueue ByRef array of Byte The queue to which to write data.

var ByRef any type The variable from which to read data to be written to
the queue.

count ByVval intl6 The number of bytes to write to the queue.

Discussion

This routine reads data from the variable and writes it to the specified queue. If there is insufficient space
in the queue, the calling task will suspend until space becomes available. Note, particularly, that no data
will be written until there is room for all the data to be written. This has two important ramifications.
Firstly, if the number of bytes to be written is larger than the data capacity of the queue, the write will
never complete. Secondly, if data is never taken out of the queue thus making room for the additional
data, the write will also never complete.

Note that the number of bytes to write may be larger than the named variable. If this is the case, data will
be taken from subsequent memory locations until the write count is satisfied. This may or may not be
what you intended to occur.

Note, also, that before any queue operations are performed, the queue data structure must be initialized.
See the discussion of OpenQueue() for more details.

Example

Di m out Queue(1 to 40) as Byte
Dim lval as Long

Cal | OpenQueue(out Queue, SizeO (out Queue))
Ival = &H55aa
Cal | Put Queue(out Queue, lval, SizeCO (lval))

Compatibility

BasicX allows any type for the first parameter. This implementation requires that it be an array of Byte.

See Also PutQueueByte, PutQueueStr

187

PutQueueByte

Type Subroutine

Invocation PutQueueByte(queue, val)

Parameter Method Type Description

gqueue ByRef array of Byte The queue to which to write data.

val ByVval Byte The byte value to be written to the queue.
Discussion

This routine writes the given byte value to the specified queue. If there is insufficient space in the queue,
the calling task will suspend until space becomes available. This means that if data is never taken out of
the queue thus making room for additional data, the process will never complete.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details.

Example

Di m out Queue(1l to 40) as Byte
Call OpenQueue(out Queue, SizeO (outQueue))
Cal | Put QueueByt e(out Queue, &H55)

Compatibility

This routine is not available in BasicX compatibility mode.

See Also OpenQueue, PutQueue, PutQueueStr

188

PutQueueStr

Type Subroutine

Invocation PutQueueStr(queue, str)

Parameter Method Type Description

gqueue ByRef array of Byte The queue to which to write data.

str ByVal String The string to be written to the queue.
Discussion

This routine writes the characters from the string to the specified queue. If there is insufficient space in
the queue, the calling task will suspend until space becomes available. Note, particularly, that no data
will be written until there is room for all the data to be written. This has two important ramifications.
Firstly, if the number of bytes to be written is larger than the data capacity of the queue, the write will
never complete. Secondly, if data is never taken out of the queue thus making room for the additional
data, the write will also never complete.

Note that before any queue operations are performed, the queue data structure must be initialized. See
the discussion of OpenQueue() for more details.

Example

Di m out Queue(1 to 40) as Byte
Cal | OpenQueue(out Queue, SizeO (out Queue))
Call Put QueueStr(out Queue, "Hello, world!'")

Compatibility

BasicX allows any type for the first parameter. This implementation requires that it be an array of Byte.

See Also PutQueueByte, PutQueue, OpenQueue

189

PutTime

Type Subroutine

Invocation PutTime(hour, minute, seconds)

Parameter Method Type Description

hour ByVal Byte The hour value (0-23).
minute ByVal Byte The minutes value (0-59).

seconds ByVal Single The seconds value (0.0 to 59.999)

Discussion

This routine combines the given values into the corresponding RTC tick count and stores the result in
Regi st er. RTCTi ck. Each parameter that is outside its corresponding legal range is considered to be
zero.

Note that Regi st er . RTCTi ck is initialized to zero on power-up or reset. This corresponds to 0:00:00.

See Also GetTime

190

PutTimeStamp

Type Subroutine

Invocation PutTimeStamp(year, month, day, hour, minute, seconds)
Parameter Method Type Description

year ByVal intl6 The year value (1999-2177).

month ByVal Byte The month value (1-12).

day ByVal Byte The day value (1-31).

hour ByVal Byte The hour value (0-23).

minute ByVal Byte The minutes value (0-59).

seconds ByVal Single The seconds value.

Discussion

This routine combines the given date values into the corresponding Regi st er . RTCDay value and
combines the given time values into the corresponding RTC tick count and stores the result in

Regi st er. RTCTi ck. The effect is the same as if Put Dat e() and Put Ti me() had been called with
their respective parameters.

Note that Regi st er . RTCDay and Regi st er. RTCTi ck are initialized to zero on power-up or reset.

191

PWM

Type Subroutine

Invocation PWM(channel, dutyCycle)

Parameter Method Type Description

channel ByVal Byte The channel to use for PWM generation.
dutyCycle ByVal Single or integral The desired duty cycle.

Discussion

This subroutine begins or modifies the generation of a PWM signal on the specified channel. The
channel must have been previously prepared for PWM generation by calling OQpenPW/) . PWM
generation is performed using one of the CPU’s 16-bit timers, the number of which varies depending on
the ZX model. For ZX models based on the mega32, mega644 and mega644P CPUs, there is one 16-bit
timer that jointly supports two PWM channels, numbered 1 and 2. For ZX models based on the megal28
and megal281 CPUs, there are two 16-bit timers and each jointly supports three PWM channels,
numbered 1 through 3 and 4 through 6 respectively. For ZX models based on the megal280 CPU, there
are four 16-bit timers and each jointly supports three PWM channels. The table below indicates the output
pin for each PWM supported channel.

Output Pins for PWM Channel Numbers

ZX Models 1 2 3 4 5 6
ZX-24, ZX-24a, ZX-24p, ZX-24n 26,D.5 27,D.4 - - - -
ZX-40, ZX-40a, ZX-40p, ZX-40n 19,D.5 18,D4 - - - -
ZX-44, ZX-44a, ZX-44p, ZX-44n 14,D.5 13,D4 - - - -
ZX-24e, ZX-24ae 15,D.5 16,D.4 - - - -
ZX-1281, ZX-1281n 15,B5 16,B6 17,B.7 5,E.3 6, E.4 7,E5
ZX-1280, ZX-1280n 24,B5 25,B.6 26,B.7 5, E.3 6, E.4 7,E5
ZX-128e, ZX-1281e 23,B5 22,B6 21,B.7 17,E3 16,E4 15,E5
ZX Models 7 8 9 10 11 12
ZX-1280, ZX-1280n 38,L.3 39,L4 40,L5 16,H4 17,H5 18, H.6

The dut yCycl e parameter specifies the desired duty cycle of the generated signal, expressing the
percentage of time that the PWM signal will be at the logic 1 state. If the supplied parameter is of type

Si ngl e, the value is in percent with a resolution of 0.01%. If the supplied parameter is integral, the units
are percent, i.e., the value 100 means 100%. Specifying a Si ngl e value that is negative or any value
greater than 100 will have an undefined effect.

If this subroutine is called without a preceding call to OpenPWMW) to prepare the timer, the call will have
no effect. This subroutine may be called multiple times to effect changes to the PWM signal’s duty cycle
while the signal is being generated. The change in duty cycle is synchronized so that it takes effect at the
beginning of the next PWM pulse.

Example

Call OpenPWM 2, 50.0, zxFastPW) prepare for 50Hz Fast PWM using channel 2
Call PW2, 7.5) ' generate PWM with 7.5% duty cycle (1.5n5)

Call Delay(1.0)

Call PWM 2, 6.25) ' generate PWM with 6.25% duty cycle (1.25n5)

192

Compatibility

This subroutine is not available in BasicX compatibility mode.

See Also

193

ClosePWM, OpenPWM

194

RadToDeg

Type Function returning Single

Invocation RadToDeg(angle)

Parameter Method Type Description

angle ByVal Single The angle, in radians, to convert to degrees.
Discussion

The trigonometric functions in the System Library all use radian angle measure. Depending on the
programming task, it is sometimes more convenient to think of angles in terms of degrees. This function
and its companion DegToRad() facilitate the conversion between the two systems.

Depending on optimization settings, if the parameter supplied to this function is known to be constant at

compile time, the compiler will convert the value at compile time. Otherwise, code is generated to
perform the conversion (multiplication by a conversion factor) at run time.

Example
Dmf as Single
Dimtheta as Single ' the angle in degrees

theta = RadToDeg(Asin(f))

Compatibility

This function is not available in BasicX compatibility mode.

See Also DegToRad

195

RamPeek

Type Function returning Byte

Invocation RamPeek(address)

Parameter Method Type Description

address ByVal intl6 The RAM address from which to read.
Discussion

This function will return the content of the specified RAM address.

Example

Dim b as Byte
Dimi as Integer

b = RanPeek(MenmAddress(i))
b = RanPeek(i . Dat aAddress)
See Also RamPeekDword, RamPeekWord

196

RamPeekDword

Type Function returning UnsignedLong

Invocation RamPeekDword(address)

Parameter Method Type Description

address ByVal intl6 The RAM address from which to read.
Discussion

This function will return the 4-byte value at the specified RAM address. The first byte will be the low order
byte and the last will be the high order byte.

Example
Dim ul as UnsignedLong

ul = RanPeekDwor d(200)

Compatibility

This function is not available in BasicX compatibility mode.

See Also RamPeek, RamPeekWord

197

RamPeekWord

Type Function returning Unsignedinteger

Invocation RamPeekWord(address)

Parameter Method Type Description

address ByVal intl6 The RAM address from which to read.
Discussion

This function will return the 2-byte value at the specified RAM address. The first byte will be the low order
byte and the following will be the high order byte.

Example
Dim u as Unsi gnedl nt eger

u = RanmPeekWdr d(200)

Compatibility

This function is not available in BasicX compatibility mode.

See Also RamPeek, RamPeekDword

198

RamPoke

Type Subroutine

Invocation RamPoke(value, address)

Parameter Method Type Description

value ByVal Byte The value to write to RAM.

address ByVal intl6 The RAM address to which to write.
Discussion

This routine will write the given value to the specified RAM address.

Caution

Modifying user variables in this way may cause your program to malfunction. Writing to areas of RAM
used by the system may cause your program to malfunction.

Examples
Dimb as Byte

Cal | RamPoke(&H55, MemAddress(b))
Cal | RamPoke(&H55, b. Dat aAddress)

See Also RamPokeDword, RamPokeWord

199

RamPokeDword

Type Subroutine

Invocation RamPokeDword(value, address)

Parameter Method Type Description

value ByVal any 32-bit The value to write to RAM.

address ByVal intl6 The RAM address to which to write.
Discussion

This routine will write the given value to the four bytes at the specified RAM address, least significant byte
first.

Caution

Modifying user variables in this way may cause your program to malfunction. Writing to areas of RAM
used by the system may cause your program to malfunction.

Example
Di m ul as Unsi gnedLong

Cal | RanmPokeDwor d(&H117355aa, MemAddress(ul))
Cal | RamPokeDwor d(&H117355aa, ul . Dat aAddress)

Compatibility

This routine is not available in BasicX compatibility mode.

See Also RamPoke, RamPokeWord

200

RamPokeWord

Type Subroutine

Invocation RamPokeWord(value, address)

Parameter Method Type Description

value ByVal intl6 The value to write to RAM.

address ByVal intl6 The RAM address to which to write.
Discussion

This routine will write the given value to the two bytes at the specified RAM address, least significant byte
first.

Caution
Modifying user variables in this way may cause your program to malfunction. Writing to areas of RAM

used by the system may cause your program to malfunction.

Example
Dim u as Unsi gnedl nt eger

Cal | RamPokeWbr d(&H55aa, MemAddress(u))

Compatibility

This routine is not available in BasicX compatibility mode.

See Also RamPoke, RamPokeDword

201

Randomize

Type Subroutine
Invocation Randomize()
Discussion

This routine seeds the random number generator with the value of Register.RTCTick. This is can be
used to introduce some randomness into the sequence of values returned by Rnd() especially if the time
that Randomize() gets called has some uncertainty due to external events, e.g. the time that a user takes
to press a key.

See Also Rnd

202

RCTime (subroutine form)

Type Subroutine

Invocation RCTime(pin, level, interval)

Parameter Method Type Description

pin ByVal Byte The pin to use.

level ByVal Byte The expected initial logic level of the pin.

interval ByRef Single The variable in which to return the charge/discharge interval.
Discussion

This routine measures how long the specified pin stays at the given logic level after it is made a tri-state
input. The return value is expressed in seconds with a resolution of about 1.085us by default but this can
be changed using Regi st er . Ti mer Speed2. If the maximum time elapses (32,767 units times the
resolution) and the pin has not changed logic levels, the return value will be zero. If the pin is not at the
specified level when called, the routine returns immediately with a value of approximately 1.085e-6. The
pin will be left in the input tri-state mode.

This function can be used with an external resistor-capacitor circuit to measure the value of one element
when the other one is known. The charge/discharge time depends on the values of R and C as well as
the initial and final voltages. Before calling this routine, you should make the specified pin an output and
set it to the level specified.

Resource Usage

This routine uses the I/O Timer. If the timer is already in use when this routine is called, it will return
immediately with a zero value. The same is true if the specified pin is invalid.

Task switching is suspended and interrupts are disabled while the charge/discharge time is being
measured. However, RTC ticks are accumulated during the process and the RTC is updated when the
process has completed so that the RTC does not lose time.

Example

See the function form of this routine for more information.

Compatibility

In BasicX, the ability to change the resolution using Regi st er . Ti mer Speed2 is not supported.

The BasicX documentation indicates that the maximum value that can be returned is about 71ms. In this
implementation, the maximum value that can be returned is about 35.6 corresponding to 35.6ms at
standard resolution. The resolution can be changed by modifying Regi st er. Ti mer Speed2 which will
affect the maximum time value.

The BasicX implementation will miss RTC ticks if the charge/discharge time is too long.

203

RCTime (function form)

Type Function returning Integer

Invocation RCTime(pin, level)

Parameter Method Type Description

pin ByVal Byte The pin to use.

level ByVal Byte The expected initial logic level of the pin.
Discussion

This function measures how long the specified pin stays at the given logic level after it is made a tri-state
input. The return value has units of about 1.085uS by default but this can be changed using

Regi st er. Ti mer Speed2. If the maximum time elapses (32,767 units) and the pin has not changed
logic levels, the return value will be zero. If the pin is not at the specified level when called, the routine
returns immediately with a value of 1. The pin will be left in the input tri-state mode.

As an example, this function can be used with an external resistor-capacitor circuit to measure the value
of one element when the other one is known. The charge/discharge time depends on the values of R and
C as well as the initial and final voltages. Before calling this routine, you should make the specified pin an
output and set it to the level specified.

Example

Const pin as Byte = 12

Call PutPin(pin, 1) ' nmake the pin an output high to start charging
Call Del ay(1. 4e-4) ' delay a bit to allow nearly full charging
i = RCTinme(pin, 1) ' neasure the tinme to reach logic zero |evel

Resource Usage

This routine uses the 1/0 Timer. If the timer is already in use when this routine is called, it will return
immediately with a zero value. The same is true if the specified pin is invalid.

Task switching is suspended and interrupts are disabled while the charge/discharge time is being
measured. However, RTC ticks are accumulated during the process and the RTC is updated when the
process has completed so that the RTC does not lose time.

Compatibility

In BasicX, the ability to change the resolution using Regi st er . Ti mer Speed2 is not supported.

The BasicX implementation will miss RTC ticks if the charge/discharge time is too long.

204

Reset1Wire

Type Function returning Byte

Invocation Reset1Wire(pin)

Parameter Method Type Description

pin ByVal Byte The pin to be used for 1-Wire 1/0.
Discussion

This function generates a reset signal on the given pin using the 1-Wire protocol. The return value is the
“presence” bit sent by the attached 1-Wire device(s), if any. It will be zero if a 1-Wire device responded, 1
otherwise.

To perform a 1-Wire operation, this function along with related 1-Wire routines must be used in the proper
sequence. See the specifications of your 1-Wire device for more information.

Resource Usage

This routine uses the 1/0 Timer and disables interrupts for approximately 1mS.

Example
Dimb as Byte

b = Reset1lWre(12)

Compatibility

This routine is not available in BasicX compatibility mode.

See Also GetlWire, GetlWireByte, GetlWireData,
PutlWire, PutlWireByte, PutlWireData

205

ResetProcessor

Type Subroutine
Invocation ResetProcessor()
Discussion

Calling this routine will cause a WatchDog reset of the processor within 20ms. When the processor
begins running again, the value of Regi st er. Reset Fl ags will indicate that a WatchDog reset has
occurred. If you need to be able to distinguish between an actual WatchDog reset and a call to

Reset Processor () itis recommended that you define a persistent variable and set its value to indicate
the source of the reset.

Compatibility

BasicX does not support Regi st er. Reset Fl ags.

206

ResumeTask

Type Subroutine

Invocation ResumeTask(taskStack)
ResumeTask()

Parameter Method Type Description

taskStack ByRef array of Byte The stack for a task of interest.

Discussion

This routine attempts to change the status of a task to a ready-to-run state. If no task stack is explicitly
given, the task stack for the Mai n() routine is assumed. The table below shows the effect for various

task states (as returned by St at usTask()).

Effect of Resuming a Task in Various States

Status State
0 Ready to run.

1 Sleeping.

2 Awaiting | nput Capt ure() .
3 Awaiting interrupt 0.

4 Awaiting interrupt 1.

5 Awaiting interrupt 2.

6 Awaiting interval expiration.
7 Awaiting analog compare.

8 Awaiting pin change.

9 Awaiting pin change.

10 Awaiting pin change.

11 Awaiting pin change.

12 Awaiting Qut put Capt ure().
13 Awaiting interrupt 3.

14 Awaiting interrupt 4.

15 Awaiting interrupt 5.

16 Awaiting interrupt 6.

18 Awaiting interrupt 7.

254 Task exiting.
255 Terminated.

Effect

None, the task is already ready to run.

The task is awakened.

The task resumes as if the | nput Capt ur e() had completed.
The task resumes as if the interrupt had occurred.

The task resumes as if the interrupt had occurred.

The task resumes as if the interrupt had occurred.

The task resumes as if the interval had expired.

The task resumes as if the comparisoninterrupt had occurred.
The task resumes as if the pin change had occurred.

The task resumes as if the pin change had occurred.

The task resumes as if the pin change had occurred.

The task resumes as if the pin change had occurred.

The task resumes as if the Qut put Capt ur e() had completed.
The task resumes as if the interrupt had occurred.
The task resumes as if the interrupt had occurred.
The task resumes as if the interrupt had occurred.
The task resumes as if the interrupt had occurred.
The task resumes as if the interrupt had occurred.
None, exiting tasks can’t be resumed.

None, halted tasks can’t be resumed.

If this routine is invoked using an array other than one that is or was being used for a task stack the result

is undefined.

See the section on Task Management in the ZBasic Reference Manual for additional information

regarding task management.

Compatibility

This routine is not available in BasicX compatibility mode.

See Also ExitTask, RunTask, StatusTask

207

Right

Type Function returning String

Invocation Right(str, length)

Parameter Method Type Description

str ByVal String The string from which to extract characters.

length ByVal int8/16 The number of characters to extract from the string.
Discussion

This function returns a string consisting of the rightmost characters of the string passed as the first
parameter. The maximum number of characters in the returned string is the smaller of 1) the number of
characters in the passed string and 2) the value of the second parameter. Internally, the length is
interpereted as a 16-bit signed value and negative values are treated as zero.

This function produces the same resultas M d(str, Len(str) — length + 1 , |ength)
assuming that the passed string is at least | engt h characters long.
Example

Dms as String, s2 as String

s = "Hello, world!"
s2 = Right(s, 6) " the result will be "world!"
See Also Left, Mid, Trim

208

Rnd

Type Function returning Single
Invocation Rnd()
Discussion

This function will return a pseudo-random value in the range of 0.0 to 1.0. The first time that Rnd() is
called after the processor starts up the pseudo-random number generator is initialized with a seed value.
The sequence of values returned will be repeatable when starting from the same seed.

You can alter the sequence of returned values in two ways. Firstly, you can set the value of
Regi st er. SeedPRNG. The next call to Rnd() will initialize the pseudo-random number generator with

that seed value before returning the first random value. The second way to modify the sequence is to call
the Randomni ze() subroutine. Doing so will initialize the pseudo-random number generator with the
current value of Regi st er. RTCTi ck. This provides a way to introduce some non-repeatability into the
sequence of values returned by Rnd() . It is especially effective if the time at which Randomi ze() is
called is controlled by some external, unpredictable event like a user pressing a key.

Example
Dimi as Integer

print 10 random val ues
For i =1 to 10
Debug. Print CStr(Rnd())
Next
Compatibility

BasicX does not support Regi st er. seedPRNG. Instead, it has a system global variable named
seedPRNG. This built-in variable is also supported in ZBasic for compatibility.

See Also Randomize

209

RunTask

Type Subroutine
Invocation RunTask(taskStack)
RunTask()
Parameter Method Type Description

taskStack ByRef array of Byte The stack for a task of interest.

Discussion

Calling this routine alters the normal task rotation regimen by immediately attempting to run the specified
task or, if no task stack is explicitly given, the Mai n() task. If the specified task cannot run (because it is
sleeping, waiting for InputCapture, etc.) the list of tasks is examined in order beginning with the task
immediately following the specified task and the first ready-to-run task that is found will be run.

Because this routine interferes with the normal task rotation it must be used carefully to avoid starving out
one or more tasks. If this routine is invoked using an array other than one that is or was being used for a
task stack the result is undefined.

See the section on Task Management in the ZBasic Reference Manual for additional information
regarding task management.

Compatibility

This routine is not available in BasicX compatibility mode.

See Also ExitTask, ResumeTask, StatusTask

210

Semaphore

Type Function returning Boolean

Invocation Semaphore(var)

Parameter Method Type Description

var ByRef Boolean A variable used as a semaphore.
Discussion

This function will test the provided variable and if it is already True, the function will return False.
Otherwise, if the semaphore variable is False, the call will set it to True and return True. This is referred
to in computer science as an “atomic test and set” operation.

A semaphore is a signaling and synchronization mechanism used in multi-tasking systems. The idea is
that if two or more tasks each want to use a particular resource they first request ownership of a
semaphore. The request mechanism ensures that even if multiple requests occur near the same time,
one and only one request will be satisfied. Therefore, the task that is granted the semaphore will have
exclusive access to the resource until it has completed its objective. Subsequently, other tasks can
request the semaphore and, if they receive it, they can perform their objective. Thus you can see that a
particular semaphore can control access to some set of resources that you define. Your system may
have multiple semaphores, each controlling access to a set of resources. Note, however, that if multiple
semaphores are required to complete an operation the possibility of deadlock exists. This problem will
occur if one task obtains one semaphore, another task obtains another semaphore and then both tasks
wait for the other semaphore to be available.

In order for this mechanism to be effective, the same semaphore variable must be used by each task for
gaining access to a particular set of resources. For this reason, the semaphore variable passed to
Semaphor e() will almost always be a global variable but it may be public or private as suits your
application. The semaphore variable must be initially False, otherwise no Semaphor e() request on that
semaphore can ever succeed. Also, after a task has successfully gotten the semaphore and has finished
using the related resources, the semaphore must be set False again so that a future Semaphor e() call
will succeed.

Example
Di m ser Sem as Bool ean

ser Sem = Fal se

" wait until we get the semaphore

Do Wiile (Not Semaphore(serSem)
Call Del ay(0.5)

Loop

" now we can use the controlled resources

[add code here]

" finished with the resources, rel ease the senaphore

ser Sem = Fal se

211

SerialNumber

Type Subroutine

Invocation SerialNumber(serNum)

Parameter Method Type Description

serNum ByRef array of Byte The array to which the serial number will be written.
Discussion

A call to this routine will copy six bytes of serial number information to the provided array. At present,
only three of the bytes are defined, representing the version number of the system firmware (for VM mode
devices) or the ZX library code (for native mode devices). The first byte is the major version number, the
second is the minor version number and the third byte is the variant number. The remaining bytes are
undefined.

Caution

If the array provided is less than 6 bytes long, subsequent memory will be overwritten, possibly with
detrimental results.

Compatibility

The serial number of this implementation may be different than that of BasicX.

212

SetBits

Type Subroutine

Invocation SetBits(target, mask, value)

Parameter Method Type Description

target ByRef Byte The byte to be modified.

mask ByVal Byte The mask indicating which bits to modify.
value ByVal Byte The value of the bits to store.
Discussion

This subroutine allows you to set the value of one or more bits in a byte while leaving others unchanged.
Effectively, the result is the same as using the statement below.

target = (target And Not mask) O (val ue And nmask)

The mask parameter governs which bits will get updated. For each bit of the mask parameter thatis a 1,
the corresponding bit of the t ar get will be set to the state of the corresponding bit of the val ue
parameter. Bits of the t ar get that correspond to zero bits of the mask parameter will remain
unchanged.

The advantage to using the Set Bi t s() subroutine instead of the equivalent statement is twofold. Firstly,
it is more efficient, resulting in less code and faster execution time. Secondly, and perhaps more
importantly, it performs the action as an atomic operation, i.e. one that is guaranteed, once begun, to
complete without an intervening task switch. This characteristic makes Set Bi t s() useful for modifying
I/0O ports and other Byt e values in a multi-tasking environment.

Example

' set the middle 4 bits of Port C to the binary val ue &B0110
Call SetBits(Register.PortC, &H3C, &H18)

Compatibility
This routine is not available in BasicX compatibility mode. Also, it is only supported by ZX firmware later

than v1.0.0.

See Also ToggleBits

213

SetlInterval

Type Subroutine
Invocation Setlnterval(interval)
Parameter Method Type Description
interval ByVal Single or intl6 The interval counter period, in RTC ticks (if an integral
value is specified) or seconds (if a Si ngl e value is
given).
Discussion

This routine sets the period of the built-in interval counter. On each RTC tick, the interval counter will be
decremented. When it gets to zero, it is reloaded with the specified value and it begins to count down
again. Furthermore, if a task is awaiting the interval expiration, it is immediately scheduled for execution
(unless a higher priority task requires service). If no task is awaiting the interval expiration, the fact that
the interval counter expired is recorded. Subsequently, a task may request a wait on the interval and,
depending on the nature of the request, the task may be immediately triggered or it may await the next
interval expiration.

Internally the interval period is stored as a 16-bit unsigned integer value. This limits the interval period to
a maximum of slightly less than 128 seconds. Of course, longer interval periods may be effectively
implemented by maintaining a counter and taking action after the expiration of a number interval periods.

Example

Call Setlnterval (200) "about 391 nilliseconds
Call Setlnterval (10.0) "about 10 seconds
Compatibility

This routine is not available in BasicX compatibility mode.

See Also WaitForinterval

214

SetJmp

Type Function returning Integer

Invocation SetImp(jmpbuf)

Parameter Method Type Description
jmpbuf ByRef array of Byte A buffer to hold the return context, see description below.
Discussion

This function, in conjunction with LongJnp() , provides a way to circumvent the normal call-return
structure and return directly to a distant caller. It is the equivalent of a non-local Goto function and can be
used, among other things, to handle exceptions in your programs. The parameter specifies a Byt e array
that will be initialized with context information to allow a direct return from deeply nested calls. The array
must be a minimum size (either 6 bytes or 24 bytes for VM mode and native mode, respectively) to hold
the context information for unwinding the call stack. You can use the built-in constant

Syst em JunpBuf Si ze to ensure that it is the proper size.

On the initial call to Set Jnp() the return value will always be zero. When control is returned via a call to
LongJnp(), the return value will be the value supplied as the second parameter to the LongJnp() call.
Generally, you should choose this value to indicate the nature of the exception condition and in most
cases it should be non-zero.

The jump buffer needs to be accessible to the LongJnp() caller. Often, this is realized by making it a
global or module-level variable. If you want it to be a local variable, you'll have to pass the buffer as a
parameter down the call chain. See the section on Exception Handling in the ZBasic Reference Manual
for more details.

Caution

If the provided array is less than minimum required size, adjacent memory locations will be modified
usually with undesirable results. Your application should not directly modify the contents of the array.
Doing so may cause unpredictable behavior.

Compatibility

This routine is not available in BasicX compatibility mode.

See Also LongJdmp

215

Shiftin

Type Function returning Byte

Invocation Shiftin(dataPin, clkPin, bitCnt)

Parameter Method Type Description

dataPin ByVal Byte The pin used to input data.

clkPin ByVal Byte The pin used to output a clocking signal.
bitCnt ByVal Byte The number of bits to read in (1 to 8).
Discussion

This function can be used to input data from a synchronous serial device like a shift register. The pin
specified for input will be made an input but the pin specified for the clock signal must already be an
output and be at the desired initial logic level.

For each of the number of bits specified, then the clock line will be pulsed by changing its logic level
twice. The data line will be sampled approximately 2 CPU clock cycles after the leading edge of the clock
pulse. With a 14.7456MHz CPU clock, this equates to about 135nS after the leading edge.

The returned value consists of the data bits read with the bit first read in the most significant bit position.
This is referred to as MSB first. If fewer than 8 bits are read, the low order bits will be zero.

Resource Usage
This subroutine uses the I/O Timer. If the I/O Timer is already in use, the function returns immediately
and the return value is zero. No other use of this resource should be attempted while the shifting is in

progress. Interrupts are disabled during the shifting process. However, RTC ticks are accumulated
during the shifting process so the RTC should not lose time.

Compatibility
For compatibility with 12C/TWI devices the clock rate is approximately 200kHz with

Regi st er. Ti mer Speedl at its default value of 1. If the value of Regi st er. Ti mer Speed1 is changed,
the bit rate will be slower.

See Also ShiftinEx, ShiftOut, ShiftOutEx

216

ShiftinEx

Type Function returning Unsignedinteger

Invocation ShiftinEx(dataPin, clkPin, bitCnt, flags)
ShiftinEx(dataPin, clkPin, bitCnt, flags, bitTime)

Parameter Method Type Description

dataPin ByVal Byte The pin used to input data.

clkPin ByVal Byte The pin used to output a clocking signal.

bitCnt ByVal Byte The number of bits to read in (1 to 16).

flags ByVal Byte Flag bits controlling the operation.

bitTime ByVal intl6 The optional duration of each bit in ticks (see description).
Discussion

This function can be used to input data from a synchronous serial device like a shift register. The pin
specified for input will be made an input but the pin specified for the clock signal must already be an
output and be at the desired initial logic level. The f | ags parameter controls how the shifting process is
performed as described in the table below.

Control Flag Definitions

Function Hex Value Bit Mask

MSB first &HOO XX XX xx xO0
LSB first &HO1 XX XX xXx x1
Sample the input after the active clock edge &HOO XX XX XX 0x
Sample the input before the active clock edge &HO2 XX XX XX 1X
Fastest possible bit time &HOO XX XX X0 xx
Use the provided bi t Ti ne parameter &HO4 XX XX X1 XX
The active clock edge is the leading clock edge &HOO XX XX 0x XX
The active clock edge is the trailing clock edge &HO8 XX XX 1x XX

The remaining bits are currently undefined but may be employed in the future.

For each of the number of bits specified, either the state of the data pin will be read and saved first or the
clock line will be changed to the opposite state first depending on bit 1 of the f | ags parameter. Finally,
the clock line will be returned to the original state thus completing one bit cycle.

If the f | ags parameter so specifies, the bi t Ti me parameter value will be used to control the bit rate of
the shifting process. The units of the bitTime parameter are, by default, approximately 67.8ns. However,
Regi st er. Ti mer Speed1l may be changed to adjust the controlling clock speed. If the bi t Ti me
parameter is not provided or if the value given is zero, the shifting will occur at the maximum rate.

Due to processing overhead the minimum bit time in the controlled speed mode is approximately 44 S.
Attempting faster bit times in the controlled speed mode will produce undefined results. Without speed
control, the bit time is approximately 2.5 S. Note that the duty cycle of the clock signal will be closer to
50% in the controlled speed mode. Without speed control, the active clock phase can be as little as 20%
of the period.

The returned value consists of the data bits read arranged in MSB or LSB order as specified by the
f 1 ags parameter. If MSB order is specified, the first bit read will be in the most significant bit position of

the result. If LSB order is specified, the first bit read will be in the least significant bit position. If fewer
than 16 bits are read, the remaining bits will be zero.

For reference purposes, the Shi ft 1 n() function is roughly equivalent to Shi ft | nEx(dpi n, cpin,
bitCnt, &H04, 74). However, the value read will be in the high order 8 bits of the returned value.

217

Resource Usage

This subroutine uses the I/O Timer if the f | ags parameter has bit 2 on. If the I/O Timer is already in use,

the function returns immediately and the return value is zero. No other use of this resource should be
attempted while the shifting is in progress. Interrupts are disabled during the shifting process. However,
RTC ticks are accumulated during the shifting process so the RTC should not lose time.

Timing

Bit 3 of the f | ags parameter specifies the active edge of the clock pulse, i.e. whether the data line will be
sampled relative to the leading edge or the trailing edge of the clock pulse. Bit 1 of the f | ags parameter
controls whether the sampling will be done before or after the active edge. When bit 1 of the f | ags
parameter is zero, the data line will be sampled approximately 2 CPU clock cycles after the active edge of
the clock pulse. When bit 1 of the f | ags parameter is one, the data line will be sampled approximately 5
CPU clock cycles before the active edge of the clock pulse. With a 14.7456MHz CPU clock, these
intervals are approximately 135nS and 340nS, respectively.

Compatibility

This function is not available in BasicX compatibility mode.

See Also Shiftln, ShiftOut, ShiftOutEx

218

ShiftOut

Type Subroutine

Invocation ShiftOut(dataPin, clkPin, bitCnt, val)

Parameter Method Type Description

dataPin ByVal Byte The pin used to output data.

clkPin ByVal Byte The pin used to output a clocking signal.
bitCnt ByVal Byte The number of bits to shift out (1 to 8).
val ByVal Byte The value to shift out.

Discussion

This function can be used to output data to a synchronous serial device like a shift register. The pin
specified for output will be made an output but the pin specified for the clock signal must already be an
output and be at the desired initial logic level.

For each of the number of bits specified, the data pin will be set to the state of the corresponding bit in the
val parameter beginning with the most significant bit first. Then the clock line will be pulsed by changing
its logic level twice.

If a data width of fewer than 8 data bits is specified, the state of the remaining bits in the provided value is
of no consequence.

Resource Usage

This subroutine uses the I/0O Timer. If the I/O Timer is already in use, the subroutine returns immediately.
No other use of this resource should be attempted while the shifting is in progress. Interrupts are
disabled during the shifting process. However, RTC ticks are accumulated during the shifting process so
the RTC should not lose time.

Compatibility

For compatibility with I2C/TWI devices the clock rate is approximately 200kHz with

Regi st er. Ti mer Speedl at its default value of 1. If the value of Regi st er. Ti mer Speed1 is changed,
the bit rate will be slower.

See Also Shiftin, ShiftinEx, ShiftOutEx

219

ShiftOutEx

Type Subroutine

Invocation ShiftOutEx(dataPin, clkPin, bitCnt, val, flags)
ShiftOutEx(dataPin, clkPin, bitCnt, val, flags, bitTime)

Parameter Method Type Description

dataPin ByVal Byte The pin used to output data.

clkPin ByVal Byte The pin used to output a clocking signal.

bitCnt ByVal Byte The number of bits to shift out (1 to 16).

val ByVal int8/16 The value to shift out.

flags ByVal Byte Flag bits controlling the operation.

bitTime ByVal intl6 The optional duration of each bit in ticks (see description).
Discussion

This function can be used to output data to a synchronous serial device like a shift register. The pin
specified for output will be made an output but the pin specified for the clock signal must already be an
output and be at the desired initial logic level. The f | ags parameter controls how the shifting process is

performed as described in the table below.

Control Flag Definitions

Function Hex Value Bit Mask

MSB first &HOO XX XX xx xO
LSB first &HO1 XX XX XX x1
Fastest possible bit time &HOO XX XX X0 xX
Use the provided bi t Ti ne parameter &HO4 XX XX X1 XX
Normal data pin output &HOO XX XX 0x XX
Open drain data pin output &HO8 XX XX 1x XX

The remaining bits are currently undefined but may be employed in the future. For compatibility, the
undefined bits should always be zero.

For each of the number of bits specified, the data pin will be set to the state of the corresponding bit in the
val parameter beginning with the either the most significant bit first or the least significant bit first
depending on bit O of the f | ags parameter. Then the clock line will be pulsed by changing its logic level
twice.

Note that if a data width of fewer than 16 data bits is specified, the bits to be shifted out must be properly
aligned in the value provided. If MSB order is specified, the data bits must be positioned in the most
significant bits of the value provided. If LSB order is specified, the data bits must be positioned in the
least significant bits of the value provided.

If the f | ags parameter so specifies, the bi t Ti me parameter value will be used to control the bit rate of
the shifting process. The units of the bi t Ti e parameter are, by default, approximately 67.8ns.
However, Regi st er. Ti mer Speedl may be changed to adjust the controlling clock speed. If the

bi t Ti me parameter is not provided or if the value given is zero, the shifting will occur at the maximum
rate.

Due to processing overhead the minimum bit time in the controlled speed mode is approximately 4y S.
Attempting faster bit times in the controlled speed mode will produce undefined results. Without speed
control, the bit time is approximately 2.2y S. Note that the duty cycle of the clock signal will be closer to
50% in the controlled speed mode. Without speed control, the active clock phase can be as little as 20%
of the period.

220

Normally, the data pin will be driven high or low according to the data bits being shifted out. For
compatibility with certain data bus interfaces, the f | ags parameter bit 3 can be used to specify that the
data pin should be put in high impedance input mode when outputting a one bit and actively pulled to
ground for a zero bit. In this mode, an external pullup resistor will need to be used to obtain a voltage
level corresponding to a logic one.

For reference purposes, the Shi ft Qut () routine is roughly equivalent to Shi ft Qut Ex(dpi n, cpi n,
bitCnt, Shl(Cint(val), 8), &H04, 74).

Resource Usage
This subroutine uses the I/0O Timer if the f | ags parameter has bit 2 on. If the I/O Timer is already in use,
the subroutine returns immediately. No other use of this resource should be attempted while the shifting

is in progress. Interrupts are disabled during the shifting process. However, RTC ticks are accumulated
during the shifting process so the RTC should not lose time.

Compatibility

This function is not available in BasicX compatibility mode.

See Also Shiftln, ShiftinEx, ShiftOut

221

Shli

Type Function returning the same type as the first parameter.
Invocation Shi(val, shiftCnt)

Parameter Method Type Description

val ByVal integral The value to be shifted.

shiftCnt ByVal int8/16 The number of bit positions to shift (0-16).
Discussion

This function returns the value provided as the first parameter but shifted left the number of bit positions
specified by the second parameter. If the shi ft Cnt is zero, the value is returned unchanged. If the
shi ft Cnt is greater than or equal to the number of bits in the value provided, the return value will be
zero. For signed types, the sign of the result will be the same as that of the provided value.

The type of the return value will be the same as the type of the first parameter.

Example

Dmi as Integer, j as Integer

i = 23

j = Shl(i, 5) "'result will be 736
Compatibility

This function is not available in BasicX compatibility mode.

See Also Shr

222

Shr

Type Function returning the same type as the first parameter.
Invocation Shr(val, shiftCnt)

Parameter Method Type Description

val ByVal integral The value to be shifted.

shiftCnt ByVal int8/16 The number of bit positions to shift (0-16).
Discussion

This function returns the value provided as the first parameter but shifted right the number of bit positions
specified by the second parameter. If the shi ft Cnt is zero, the value is returned unchanged. If the

shi ft Cnt is greater than or equal to the number of bits in the value provided, the return value will be
zero. For signed types, the sign of the result will be the same as that of the provided value.

The type of the return value will be the same as the type of the first parameter.

Example

Dmi as Integer, j as Integer

i = 23

j = Shr(i, 2) "'result will be 5
Compatibility

This function is not available in BasicX compatibility mode.

See Also Shl

223

Sighum

Type Function returning the same type as the first parameter.

Invocation Signum(val)

Parameter Method Type Description

val ByVal signed The value to be tested for positive, zero, negative.
Discussion

This function returns +1, 0 or —1 depending on whether the value provided is positive, zero or negative.
The type of the return value will be the same as the type of the parameter value.

Example

Dmi as Integer, j as Integer

i =-23

j = Signum(i) "result will be -1
Compatibility

This function is not available in BasicX compatibility mode.

224

Sin

Type Function returning Single

Invocation Sin(arg)

Parameter Method Type Description

arg ByVal Single The angle, in radians, of which the sine will be computed.
Discussion

The return value will be the sine of the supplied value, in the range —1.0 to 1.0.

Example

Const pi as Single = 3.14159
Dim val as Single

val = Sin(pi / 2.0) " result is approximately 1.0

See Also Asin, DegToRad, RadToDeg

225

SizeOf

Type Function returning Integer

Invocation SizeOf(var)

Parameter Method Type Description

var ByRef any type The variable whose size, in bytes, is desired.
Discussion

This function returns the number of bytes constituting the supplied variable.

The primary purpose of this function is to allow writing code that is more easily maintained. For example,
instead of hard coding the size value to pass to the OpenQueue() subroutine, you can use
Si zeOf (queue) instead. When you change the size of the queue there will be no need to update the

OpenQueue() calls.

When used with arrays, you may give the array name without any index parameters and Si zeCOf () will

return the total number of bytes occupied by the array. Alternately, you may specify constant expressions
for all of the array dimensions and Si zeOf () will return the number of bytes occupied by a single

element of the array. This function is not particularly useful with sub-byte types (Bit and Nibble).

The SizeOf() function also allows the argument to name one of the fundamental data type (except
St ri ng). In this case it returns the number of bytes comprising the type. For example,
Si zeof (1 nt eger) returns the value 2.

Example

Dim cnt as |nteger
Dimval as Single
Dmia(l to 20) as Integer

cnt = SizeO (val) "result is 4
cnt = SizeO (ia) " result is 40
Compatibility

This function is not available in BasicX compatibility mode.

See Also SizeOfU

226

SizeOfU

Type Function returning Unsignedinteger

Invocation SizeOfU(var)

Parameter Method Type Description

var ByRef any type The variable whose size, in bytes, is desired.
Discussion

This function returns the number of bytes constituting the supplied variable.

The primary purpose of this function is to allow writing code that is more easily maintained. For example,
instead of hard coding the size value to pass to the OpenQueue() subroutine, you can use
Si zeOf U(queue) instead. When you change the size of the queue there will be no need to update the

OpenQueue() calls.

When used with arrays, you may give the array nhame without any index parameters and Si zeCf U() will

return the total number of bytes occupied by the array. Alternately, you may specify constant expressions
for all of the array dimensions and Si zeOf U() will return the number of bytes occupied by a single

element of the array. This function is not particularly useful with sub-byte types (Bit and Nibble).

The SizeOfU() function also allows the argument to name one of the fundamental data type (except
St ri ng). Inthis case it returns the number of bytes comprising the type. For example,
Si zeof U(| nt eger) returns the value 2.

Example

Dim cnt as Unsi gnedl nt eger
Dimval as Single
Dmia(l to 20) as Integer

cnt = SizeO U val) "result is 4
cnt = SizeO'U(ia) " result is 40
Compatibility

This function is not available in BasicX compatibility mode.

See Also SizeOf

227

Sleep

Type Subroutine

Invocation Sleep(time)

Parameter Method Type Description

time ByVal Single or int16 The amount of time to delay, in seconds
(Single) or RTC ticks (int16)

Discussion

This routine suspends the current task for a period of time up to as long as specified. The actual delay
depends on what other tasks actually do that may run in the interim. It is possible that the task will be
suspended indefinitely depending on what another task might do.

Note that if the current task is locked, this call will unlock it.

There is a subtle difference between Del ay() and Sleep() when the arguments are non-zero. For

Del ay() the specified time is the minimum amount of delay that the task will experience assuming that
no other task is ready to run. The actual delay could be up to 1.95ms longer than the specified delay.
For Sleep(), the specified time is the maximum amount of delay that the task will experience assuming
that no other task is ready to run. The actual delay could be up to 1.95ms less than the specified delay.

Example
Do
Call PutPin(25, 0)
Call Sl eep(0.5) ' a hal f-second del ay
Call PutPin(25, 1)
Call Sl eep(256) ' a hal f-second del ay

Loop

This loop causes the red LED to turn on an off alternately for a half second each.

Compatibility

The BasicX documentation specifically indicates that Sleep() will unlock a locked task. However, tests

indicate that this only happens if the parameter to Sleep() is non-zero. This implementation unlocks a
task on any Sleep() call.

See Also Delay, DelayUntilClockTick, Pause, WaitForInterval, Register. RTCStopWatch

228

SngClass

Type Function returning Byte

Invocation SngClass(arg)

Parameter Method Type Description

arg ByVal Single The value of which to determine the floating point classification.
Discussion

The IEEE 754 standard floating point format used by ZBasic specifies a set of classifications for floating
point values. This function returns a numeric value indicating the class to which the passed Si ngl e
value belongs. The table below enumerates the return values and describes the meaning of each.

Floating Point Value Classes

Class Value Description

ClassNormal 1 Normalized - This class represents “normal” floating point values
such as 1.537 but does not include 0.0.

ClassZero 2 Zero - This class represents the zero value (positive and
negative).

Classinfinity 3 Infinity - This class represents positive and negative infinity.
Dividing a positive value by zero results in positive infinity.

ClassDenormal 4 Denormalized - This class represents an internal form known as

denormalized values. Such values should never be generated
as a result of a floating point operation. However if you copy
some random bytes into a floating point variable the result may
be a denormalized value.

ClassNaN 5 NaN - This class represents values that are “Not A Number”.
Taking the square root of a negative value or the logarithm of
zero results in a NaN.

The names in the first column are available as built-in constants. Except for ClassNaN, the return value
may include the flag &H80 to indicate a negative value. For example, SngCl ass(- 1. 0) returns the

value &H81 to indicate a negative ClassNormal value. The built-in constant representing the negative
flag is ClassNegative. The built-in constant ClassMask may be used to remove the negative flag from the
return value, e.g. Sngd ass(fval) And C assMask.

Examples

Dim cl ass as Byte

class = Sngd ass(1.0) "result is 1
class = Sngd ass(-1.0) " result is &HB1
class = Sngd ass(-1.0) And O assMask ' result is 1
class = Sngd ass(Sqr(-1.0)) "result is 5
class = Sngd ass(1.0 / 0.0) " result is 3
Compatibility

This function is not available in BasicX compatibility mode.

229

SPICmd

Type Subroutine

Invocation SPICmd(channel, writeCnt, writeData, readCnt, readData)
Parameter Method Type Description

channel ByVal Byte The SPI channel number (1-4).

writeCnt ByVal integral The number of bytes to write (0 — 65535).
writeData ByRef any type The variable containing the data to write.
readCnt ByVal integral The number of bytes to read (0 —65535).
readData ByRef any type The variable in which to place the data read.

Discussion

The routine allows you to send and/or receive data from a device connected to the processor's SPI bus
(the holes on the end of the ZX device between pins 1 and 24). The specified channel must have been
previously opened with a call to OpenSPI (). If the channel has not been opened, the results are
undefined.

If bothwriteCnt andreadCnt are zero the routine returns immediately without doing anything. You
may specify the value O for wr i t eDat a or r eadDat a if no data is being provided. If the value of
readCnt exceeds the size of the r eadDat a variable, the additional bytes will be written to subsequent
memory locations, possibly with undesirable results.

The execution of the SPI command occurs in four phases:

e Chip select is asserted by setting the previously specified pin to a logic zero level.

e Ifthewrit eCnt parameter is non-zero, the data bytes at wr i t eDat a are written sequentially to
the SPI interface. The data returned by the SPI device during this phase is discarded.

e IfthereadCnt parameter is non-zero, the existing data beginning at r eadDat a are written to the
SPI device and the returned bytes are stored sequentially in the specified variable. That is, the
byte atr eadDat a(1) is sent to the device and the byte that it sends back is stored at
readbDat a(1) . The same occurs for r eadDat a(2) , etc.

o Finally, chip select is deasserted by setting the previously specified pin to a logic one level.

Whether you use wri t eDat a or r eadDat a or both depends on the particulars of the device you're
using. In some cases, you'll need to populate readData and in other cases not. Careful study of the
datasheet of the target device will be required to determine how SPI Cnd() can be used to interface with
it.

Example

Dimodata(l to 2) as Byte, idata(l to 10) as Byte
Call OpenSPl (1, 0, 12)

Qdata(1l) = &HO6

Qdata(2) = &HOO

Call sSPICnd(1, 2, odata(l), 10, idata(l))

In this example i dat a is not initialized before calling SPI Cnd() . If your SPI device needs specific data
written to it during the read phase i dat a would need to be initialized before the call.

230

Compatibility
The use of a zero value to indicate that no data buffer is being supplied is not supported in BasicX

compatibility mode. Also, in BasicX compatibility mode, both wr i t eCnt and r eadCnt are Byte values
and, thus, limited to a maximum of 255.

231

Sqr

Type Function returning Single

Invocation Sqar(arg)

Parameter Method Type Description

arg ByVal Single The value of which the square root will be computed.
Discussion

The return value will be the square root of the supplied value. Note that the Sqr () function will return
NaN if the argument is negative.

Example

Dimval as Single

val = Sgr(2.0) " result is approximately 1.414

232

StackCheck

Type Subroutine

Invocation StackCheck(enable)

Parameter Method Type Description

enable ByVval Boolean The enable/disable state desired.
Discussion

This subroutine enables or disables stack checking. See the section on Run Time Stack Checking in the
ZBasic Reference Manual for more information.

Example

Call StackCheck(true)

Compatibility

This routine is not available in BasicX compatibility mode nor is it available for native mode devices.

233

StatusCom

Type Function returning Byte

Invocation StatusCom(chan)

Parameter Method Type Description

chan ByVval Byte The serial channel of interest.
Discussion

This function returns a set of flag bits that indicate the status of the specified serial channel. The bits and
their meanings are shown in the table below.

Serial Channel Status Bit Values
Value Meaning
&HO01 The channel number is valid but may or may not be open.
&HO02 The channel is open.
&HO04 The channel has data yet to be transmitted.

The remaining bits are currently undefined but may convey additional information in the future.

Compatibility

This function is not available in BasicX compatibility mode.

See Also CloseCom, ComChannels, DefineCom, OpenCom

234

StatusQueue

Type Function returning Boolean

Invocation StatusQueue(queue)

Parameter Method Type Description

gqueue ByRef array of Byte The queue of interest.
Discussion

This function returns Tr ue if there data bytes in the queue, otherwise Fal se.
Note that before any queue operations are performed, the queue data structure must be initialized. See

the discussion of OpenQueue() for more details.

Compatibility

BasicX allows any type for the first parameter. This implementation requires that it be an array of Byt e.

See Also GetQueueCount, OpenQueue

235

StatusTask

Type Function returning Byte
Invocation StatusTask(taskStack)
StatusTask()
Parameter Method Type Description

taskStack ByRef array of Byte The stack for a task of interest.

Discussion

This function returns a value indicating the status of the task associated with the given task stack. If no
task stack is explicitly given, the task stack for the Mai n() routine is assumed. The return values and

their respective meanings are shown in the table below.

Task Status Values

Constant Value Meaning

TaskReady 0 The task is running or ready to run.

TaskSleeping 1 The task is sleeping.

TaskWaitInputCapture 2 The task is waiting for InputCapture() to complete.
TaskWaitintO 3 The task is awaiting Interrupt O.

TaskWaitintl 4 The task is awaiting Interrupt 1.

TaskWaitint2 5 The task is awaiting Interrupt 2.

TaskWaitinterval 6 The task is waiting for the interval counter to expire.
TaskWaitAnalogCompare 7 The task is waiting for an analog comparator event.
TaskWaitPinChangeA 8 The task is waiting for a pin change event on PortA
TaskWaitPinChangeB 9 The task is waiting for a pin change event on PortB
TaskWaitPinChangeC 10 The task is waiting for a pin change event on PortC
TaskWaitPinChangeD 11 The task is waiting for a pin change event on PortD
TaskWaitOutputCapture 12 The task is waiting for OutputCapture() to complete.
TaskWaitInt3 13 The task is awaiting Interrupt 3.

TaskWaitInt4 14 The task is awaiting Interrupt 4.

TaskWaitInts 15 The task is awaiting Interrupt 5.

TaskWaitInt6 16 The task is awaiting Interrupt 6.

TaskWaitInt7 17 The task is awaiting Interrupt 7.

TaskHalting 254 The task is in the process of terminating.
TaskHalted 255 The task has terminated.

If this function is invoked using an array other than one that is or was being used for a task stack the
result is undefined.

See the section on Task Management in the ZBasic Reference Manual for additional information

regarding task management.

Compatibility

This routine is not available in BasicX compatibility mode.

See Also ExitTask, ResumeTask, RunTask, TasklsValid

236

StatusX10

Type Function returning Byte

Invocation StatusX10(chan)

Parameter Method Type Description

chan ByVval Byte The X-10 communication channel of interest.
Discussion

This function returns a set of flag bits that indicate the status of the specified X-10 channel. The bits and
their meanings are shown in the table below. The return value may comprise zero or more of the status
bits.

X-10 Channel Status Bit Values
Value Meaning
&HO1 The channel number is valid but may or may not be open.
&H02 The channel is open.
&HO4 The channel has data yet to be transmitted.

The remaining bits are currently undefined but may convey additional information in the future.
Compatibility
This function is not available on ZX models that are based on the ATmega32 processor (e.g. the ZX-24).

Moreover, it is not available in BasicX compatibility mode.

See Also CloseX10, DefineX10, OpenX10

237

StrAddress

Type Function returning Unsignedinteger

Invocation StrAddress(str)

Parameter Method Type Description

str ByVal String The string variable whose string address is desired.
Discussion

This function returns the memory address of the first character of a string stored in a string variable. Note
that for dynamically allocated strings, the string address will be zero if the string is empty and the returned
address may refer to RAM, Program Memory or Persistent memory. The function St r Type() can be

used to determine which address space contains the string’s characters. For statically allocated strings,
the string address will always be non-zero even if the string is empty.

See the section on Strings in the ZBasic Reference Manual for more details about dynamically vs.
statically allocated strings.

Example

Dim str as String

Di m addr as Unsi gnedl nt eger

Dmb as Byte

str = "Hello, world!"

addr = StrAddress(str)

b = RanPeek(addr) "result will be 72, the letter H

Compatibility

This function is not available in BasicX compatibility mode.

See Also StrType

238

StrCompare

Type Function returning Integer
Invocation StrCompare(strl, str2)
StrCompare(strl, str2, ignoreCase)
Parameter Method Type Description
strl ByVal String The first string to compare.
str2 ByVal String The second string to compare.
ignoreCase ByVal Boolean A flag controlling whether alphabetic case is significant.
Discussion

This function returns a value indicating the “sort order” of the two strings. If the returned value is
negative, the first string precedes the second in sort order, i.e. the first string would appear before the
second in a list sorted alphabetically. If the returned value is zero, the strings have the same sort order
and if it is greater than zero, the second string has a higher sort order. If the optional i gnor eCase
parameter is given, the comparison is done either observing or ignoring differences in alphabetic case
depending on the value of the parameter. For the purposes of this parameter only the characters A-Z and
a-z (&H41 to &H5a and &H61 to &H7a) are considered to be alphabetic. If the i gnor eCase parameter is
omitted, the comparison is performed observing case differences.

Example

Dmstrl as String
Dimstr2 as String

If (StrConpare(strl,
Debug. Pri nt

End |f

Compatibility

str2,

true) = 0) Then

"The strings match"

This function is not available in BasicX compatibility mode.

See Also

StrFind

239

StrFind

Type Function returning Byte

Invocation StrFind(inStr, findStr)
StrFind(inStr, findStr, startldx)
Strrind(inStr, findStr, startldx, ignoreCase)

Parameter Method Type Description

inStr ByVal String The string to be searched.

findStr ByVal String The string being sought.

startldx ByVal integral The index of inStr at which to begin the search.

ignoreCase ByVal Boolean A flag controlling whether alphabetic case is significant.

Discussion

This function attempts to find the first occurrence of the fi ndSt r string within the i nSt r string. Ifitis
found, the return value gives the 1-based index where the sought string was found within the searched
string. If the sought string is not found, zero is returned. If the optional st art | dx parameter is not
given, the search begins at the first character of the searched string, equivalent to specifying 1 for
startl dx. If the optional i gnor eCase parameter is not given, the search is performed observing
alphabetic case differences, otherwise alphabetic case differences are significant or not depending on the
value specified for i gnor eCase. For the purposes of this parameter only the characters A-Z and a-z
(&H41 to &H5a and &H61 to &H7a) are considered to be alphabetic.

Searching for a zero length string will always be successful and the return value will be the specified or

implied starting index. Searching for a non-zero length string within a zero length string will always fail,
returning 0.

Examples

Dimidx as Byte

i dx = StrFind("haystack"”, "needle") " returns O
idx = StrFind("haystack with needle", "needle") ' returns 15
idx = StrFind("foo bar foo", "foo", 2) " returns 9
idx = StrFind("foo bar foo", "", 2) ' returns 2
idx = StrFind("foo bar FOO', "FOOJO') ' returns 9
idx = StrFind("foo bar FOO', "FOO', 1, true) " returns 1
Compatibility

This function is not available in BasicX compatibility mode.

See Also StrCompare

240

StrReplace

Type Function returning String

Invocation StrReplace(str, findStr, replStr) or
StrReplace(str, findStr, replStr, startldx) or
StrReplace(str, findStr, replStr, startldx, replCount) or
StrReplace(str, findStr, replStr, startldx, replCount, ignoreCase)

Parameter Method Type Description

str ByVal String The subject string in which to perform replacement.
findStr ByVal String The sought string.

replStr ByVval String The replacement string.

startldx ByVval integral The index of ’str’ at which to begin the replacement.
replCount ByVval integral The number of replacements to perform.

ignoreCase ByVal Boolean A flag controlling whether alphabetic case is significant.
Discussion

This routine produces a new string by replacing occurrences of the sought string with the replacement
string in the subject string. If the optional st art | dx parameter is not given, the search begins at the first
character of the subject string, equivalent to specifying 1 for st art | dx. If the optional r epl Count
parameter is not given, all occurrences of the sought string will be replaced. If the optional i gnor eCase
parameter is not given, the search is performed observing alphabetic case differences, otherwise
alphabetic case differences are significant or not depending on the value specified fori gnor eCase. For
the purposes of this parameter, only the characters A-Z and a-z (&H41 to &H5a and &H61 to &H7a) are
considered to be alphabetic.

If the subject string contains no occurrences of the sought string, or if the sought string is zero length, or if
the replacement count is zero, the returned string will be identical to the subject string. The replacement
count and the start index are treated internally as signed 16-bit values. If the value of the start index is
less than 1, a starting index of 1 is assumed.

Compatibility

This function is not available in BasicX compatibility mode.

241

StrType

Type Function returning Byte

Invocation StrType(str)

Parameter Method Type Description

str ByVal String The string variable whose string type is desired.
Discussion

This function returns a value indicating the nature of a string variable. The values returned have the
meaning shown in the table below.

Type
&HOO0

&HeO
&He?2
&He3
&He4
&He5

&He6

&Hf f

Meaning

The string is a standard statically allocated string or a bounded string. The value returned by
St r Addr ess() is a RAM address and can be read using RamPeek() or MenCopy ().

The string is dynamically allocated. The value returned by St r Addr ess() is a RAM
address (which may be zero) and can be read using RanPeek() or MenCopy ().

The string is in Program Memory. The value returned by St r Addr ess() is a Program
Memory address and can be read using Get EEPROM) .

The string is in Persistent Memory. The value returned by St r Addr ess() is a Persistent
Memory address and can be read using Get Per si stent ().

The string is in RAM. The value returned by St r Addr ess() is a RAM address (which may
be zero) and can be read using RanmPeek() or MenCopy() .

The string is in RAM and is limited to 1 or 2 characters. The value returned by

Str Address()is a RAM address and can be read using RanPeek() or MenCopy() .
The string is in RAM. The value returned by St r Address()i s a RAM address and can
be read using RamPeek () or MenCopy(). This special string type is used for native-mode
code to pass a bounded string or fixed-length string to a subroutine/function ByVal.

The string is a statically allocated fixed-length string. The val ue
returned by StrAddress() isa RAM address and the data can be read using
RanPeek() or MenCopy ().

See the section on strings in the ZBasic Reference Manual for more details about dynamically vs.

statically al

located strings.

Compatibility

This function is not available in BasicX compatibility mode.

See Also

StrAddress

242

System.Alloc

Type Function returning Unsignedinteger

Invocation System.Alloc(numBytes)

Parameter Method Type Description

numBytes ByVal integral The size of the requested allocation.
Discussion

This function allocates a block of memory from the heap of the specified size and returns the address of
the first byte of the block. If a block of the specified size cannot be allocated, zero is returned. The block
can be returned to the heap using the subroutine Syst em Free().

This function and the block of memory it returns must be used with great care. If your program fails to
deallocate the block using Syst em Free() when it is no longer needed, the heap may eventually be
exhausted. Since space for strings is also allocated from the heap, exhaustion may cause string
operations to fail. Moreover, if your program writes to memory outside of the bounds of the block, the
heap data structures may be corrupted. This may cause future heap allocation requests to fail.

For native mode devices (e.g. the ZX-24n) a heap allocation may fail if the heap size is set too small
compared to the needs of your application. To aid in determining a sufficient heap size the System
Library function System.HeapHeadRoom() may be used to discover the amount of space in the heap that
has not yet been used at the time of the call.

Example

Di m addr as Unsi gnedl nt eger

addr = System Al l oc(50)

[other code here that uses the allocated bl ock]

Call System Free(addr)

addr = 0

Compatibility

This function is not available in BasicX compatibility mode.

See Also System.Free

243

System.DevicelD

Type Subroutine

Invocation System.DevicelD(buffer)

Parameter Method Type Description

buffer ByRef array of Byte The array to which the identification characters will be written.
Discussion

A call to this routine will copy up to 10 bytes to the buffer provided. The data copied to the buffer
comprise characters of a string that identify the ZX device on which the progam is executing. The last
byte of the identification is followed by a zero byte that serves to mark the end of the identification
characters. The example below illustrates how the data can be used to create a string.

Although this subroutine is primarily intended for manufacturing test purposes, it may be useful for other
purposes as well.

Caution

If the array provided is less than 10 bytes long, subsequent memory may be overwritten, possibly with
detrimental results.

Example

Dimbuf(1l to 10) as Byte
DimidStr as String
Dimidx as Byte

Call System Devi cel D(buf)
idStr = MakeString(buf. DataAddress, SizeO (buf))
idx = StrFind(idStr, Chr(0))
If (idx <> 0) Then
idsStr = Left(idStr, idx - 1)
End | f
Debug. Print idStr ' Displays "ZX24" on a ZX-24

Compatibility

This routine is not available in BasicX compatibility mode.

244

System.Free

Type Subroutine

Invocation System.Free(addr)

Parameter Method Type Description

addr ByVal Unsignedinteger The address of the block to free.
Discussion

This subroutine returns a block of allocated memory to the heap so that it may be later re-used. The
addr parameter must be the value returned by an earlier call to Syst em Al | oc() that has not yet been
freed. Invoking this subroutine with addr equal to O is a special case that is benign.

This function and its companion, Syst em Al | oc(), must be used with great care. If Syst em Free()
is called with a non-zero value that is not one returned by Syst em Al | oc() or a value that has already
been freed, the heap management data structures will almost certainly be corrupted and future
allocations will likely fail. It is a good practice to set an address to zero after it has been freed as
illustrated in the example below.

Example

Di m addr as Unsi gnedl nt eger

addr = System All oc(50)

[other code here that uses the allocated bl ock]
Call System Free(addr)

addr = 0

Compatibility

This routine is not available in BasicX compatibility mode.

See Also System.Alloc

245

System.HeapHeadRoom

Type Function returning Unsignedinteger
Invocation System.HeapHeadRoom()
Discussion

This function determines the amount of space in the string heap that has never been used irrespective of
the current end-of-heap position. The primary use for it is to determine the amount of heap space used
by an application in order to balance the requirements of the heap and the various task stacks.

Compatibility

This function is only available for native code targets, e.g. the ZX-24n.

See Also System.TaskHeadRoom

246

System.HeapSize

Type Function returning Unsignedinteger
Invocation System.HeapSize()
Discussion

This function determines the amount of space reserved for the string heap. This value may be of use in
special circumstances such as allocating extra buffers or dynamic task stacks.

Compatibility

This function is only available for native code targets, e.g. the ZX-24n.

See Also System.HeapHeadRoom

247

System.TaskHeadRoom

Type Function returning Unsignedinteger

Invocation System.TaskHeadRoom(taskStack)
System.TaskHeadRoom()

Parameter Method Type Description
taskStack ByRef array of Byte The stack for a task of interest.

Discussion

This function determines the amount of space in task stack of the specified task that has never been
used, irrespective of the current position of the task stack pointer. The primary use for it is to determine
the amount of task stack space used by a task in order to balance the requirements of the heap and the
various task stacks. If the supplied parameter does not refer to a valid task stack (i.e. a stack for a task
that is in the task list), the return value will be &Hf f f f .

For the second form, with no task stack specified, the stack of the calling task is examined. In either

case, if zero is returned it is nearly certain that the task stack has overflowed, possibly overwriting
adjacent data.

Compatibility
For VM mode devices, calling this function for the Main() task will always return &HFFFF unless you have

specified a stack limit for Main(). See the Opti on St ackLi m t directive and related directives for more
information.

See Also System.HeapHeadRoom

248

249

Tan

Type Function returning Single

Invocation Tan(arg)

Parameter Method Type Description

arg ByVal Single The angle, in radians, of which the tangent will be computed.
Discussion

The return value will be the tangent of the supplied value. Note that the Tan() function may return
positive or negative infinity values.

Example
Const pi as Single = 3.14159
Dimval as Single

val = Tan(pi / 4.0) " result is approximately 1.0

See Also Atn, Atn2, DegToRad, RadToDeg

250

TasklsLocked

Type Function returning Boolean
Invocation TasklsLocked()
Discussion

This function will return Tr ue if the calling task is locked, Fal se otherwise.

See Also LockTask, UnlockTask

251

TasklIsValid

Type Function returning Boolean
Invocation TasklIsValid(taskStack)
Parameter Method Type Description

taskStack ByRef array of Byte The stack for a task of interest.

Discussion

This function will return Tr ue if the specified task stack is currently in the task list, Fal se otherwise. This
function can be used with allocated task stacks to determine when it is safe to deallocate the task stack
memory.

See Also StatusTask

252

Timer

Type Function returning Single
Invocation Timer()
Discussion

This function returns the current RTC time represented as the number of seconds since midnight with a
best-case resolution of 1.95ms. Note that Regi st er . RTCTi ck gives you the equivalent information
albeit in the form of a 32-bit value representing the number of 1.95ms ticks since midnight. Depending on
your needs, one or the other may be more efficient to use.

253

To<enum>

Type Function returning an Enum member

Invocation To<enum>(val)

Parameter Method Type Description

val ByVal integral The value to convert to an Enum member.
Discussion

This page describes a set of functions that convert the given value to a member of a specific

enumeration. For each enumeration that you define in your program the compiler automatically provides a
conversion function whose name is the name of the enumeration with the prefix To.

To use this conversion function, replace the <enum> portion of the function name as shown above with
the actual enumeration name for which value-to-member conversion is desired. See below for an
example of how this is done.

See the section on enumerations for more information.

Compatibility
This function is provided for backward compatibility. It is recommended to use CType() for new
applications.
Example
Enum Col or
Red
G een
Bl ue
End Enum

Dim c as Col or

¢ = ToColor(1) ' ¢ will have the value Geen

See Also CType

254

ToggleBits

Type Subroutine

Invocation ToggleBits(target, mask)

Parameter Method Type Description

target ByRef Byte The byte to be modified.

mask ByVal Byte The mask indicating which bits to modify.
Discussion

This subroutine allows you to change the state of one or more bits in a byte while leaving others
unchanged. Effectively, the result is the same as using the statement below.

target = target Xor nask

The mask parameter governs which bits will get changed. For each bit of the nask parameter that is a 1,
the corresponding bit of the t ar get will be set to the opposite of its current state. Bits of the t ar get
that correspond to zero bits of the mask parameter will remain unchanged.

The advantage to using the Toggl eBi t s() subroutine instead of the equivalent statement is twofold.

Firstly, it is more efficient, resulting in less code and faster execution time. Secondly, and perhaps more
importantly, it performs the action as an atomic operation, i.e. one that is guaranteed, once begun, to
complete without an intervening task switch. This characteristic makes ToggleBi t s() useful for

modifying 1/0O ports and other Byt e values in a multi-tasking environment.

Example

change the state of the two |least significant bits of Port C
Call Toggl eBits(Register.PortC, &H03)

Compatibility
This routine is not available in BasicX compatibility mode. Also, it is only supported by ZX firmware later

than v1.0.0.

See Also SetBits

255

Trim

Type Function returning String

Invocation Trim(str)

Parameter Method Type Description

str ByVval String The string from which blanks will be stripped.
Discussion

This function returns a new string containing the same characters as the passed string except that
leading and trailing spaces will be removed. If the string consists solely of spaces, the resulting string will
be zero length.

Example

Dms as String, sl1 as String

s =" Hello, worldH "
s2 = Trinm(s) ' the result will be "Hello, world!"
See Also Left, Mid, Right

256

UBound

Type Function returning Integer

Invocation UBound(array) or
UBound(array, dimension)

Parameter Method Type Description

array ByRef any array The array about which the bound information is desired.

dimension ByVval int16 The dimension of interest. See the discussion for more
details.

Discussion

This function returns the upper bound of the specified array. There are two forms. The first requires only
the array to be specified. In this case, the upper bound of the first dimension of the array is returned.
The second form specifies a dimension number, the valid range of which is 1 to the number of
dimensions of the array. The array may be located in RAM, Program Memory or Persistent Memory.

In contrast to LBound() , a parameter that is an array cannot be passed to UBound() since the return
value of UBound() is computed at compile-time and many different sized arrays may be passed as a
parameter.

Note that the use of this function instead of hard-coding values makes your code easier to maintain.

Example

Dim ba(l to 20) as Byte
Dmm(3 to 5 -6 to 7) as Byte
Dimi as I|nteger

i = UBound(ba) ' the result is 20
i = UBound(mma) " the result is 5
i = UBound(ma, 1) " the result is 5
i = UBound(ma, 2) " the result is 7
Compatibility

This function is not available in BasicX compatibility mode.

See Also LBound

257

UCase

Type Function returning String

Invocation UCase(str)

Parameter Method Type Description

str ByVval String The string to be changed to upper case.
Discussion

This function returns a new string containing the same characters as the passed string except that all
lower case characters will be replaced with upper case characters.

Example

Dms as String, sl1 as String

s = "Hello, world!"
s2 = UCase(s) ' the result will be "HELLO, WORLD "
See Also LCase

258

UnlockTask

Type Subroutine
Invocation UnlockTask()
Discussion

This routine causes the running task to become unlocked so that other tasks can run. Calling
Unl ockTask() when a task is not actually locked has no effect.

See Also LockTask

259

UpdateRTC

Type Subroutine

Invocation UpdateRTC(fastTicks)

Parameter Method Type Description
fastTicks ByVal int16 The number of fast ticks to add to the RTC.
Discussion

This subroutine can be used to update the RTC with the number of fast ticks missed during a long
operation performed with interrupts disabled. In order to determine the number of fast ticks that are
missed, your code must periodically check the interrupt flag of the RTC timer and, if it is set, increment a
local counter value and then reset the interrupt flag.

Compatibility

This function is only available for native code targets, e.g. the ZX-24n.

Example
' This exanple is for the ZX-24n and ot her native npbde devices
' that use TinmerO for the RTC tiner.
At om ¢

Di m m ssedTi cks as Unsi gnedl nt eger

Const TickFlag as Byte = &H02

m ssedTicks = 0

Do
' place code here that perfornms one iteration of a
" long process and eventually exits the | oop
' check the RTC flag, reset it
I f (CBool (Register. TIFRO And Ti ckFlag)) Then
m ssedTi cks = missedTicks + 1
Regi ster. TIFRO = Ti ckFl ag
End |f
Loop

Cal | Updat eRTC(m ssedTi cks)
Call Yield()
End Atomc

See Also Yield

260

Valuel

Type Subroutine

Invocation Valuel(str, val, flag)

Parameter Method Type

Description

str ByVval String The string from which to extract an | nt eger value.
val ByRef int16 The variable to receive the value.

flag ByRef Boolean The variable to receive a success indicator.
Discussion

This routine converts a character representation of an integral number, contained in the st r parameter,
to an | nt eger value returned in the val parameter. If the string is in an acceptable format, the f | ag
parameter is set to Tr ue. Otherwise, the f | ag parameter is set to Fal se and the val parameter will be

0.

The string may contain any number of leading and/or trailing spaces. The value itself may consist of an
optional plus or minus sign, an optional radix indicator, and one or more digits. The supported radix
indicators are &H for hexadecimal, &0 for octal and &B or &X for binary (all case insensitive). If no radix

indicator is present, decimal is assumed.

If the provided string has the proper format but represents a value that is too large or too small to be
represented as an | nt eger, the result will be invalid but no such indication will be given.

Examples of integral values accepted by Val uel () are:

103

+123
&H55

- &B01101

Compatibility

This function is not available in BasicX compatibility mode.

See Also Valuel, ValueS

261

ValuelL

Type Subroutine

Invocation Valuel (str, val, flag)

Parameter Method Type Description

Str ByVval String The string from which to extract an Long value.
Val ByRef int32 The variable to receive the value.

Flag ByRef Boolean The variable to receive a success indicator.
Discussion

This routine converts a character representation of an integral number, contained in the st r parameter,
to a Long value returned in the val parameter. If the string is in an acceptable format, the f | ag
parameter is set to Tr ue. Otherwise, the f | ag parameter is set to Fal se and the val parameter will be
0.

The string may contain any number of leading and/or trailing spaces. The value itself may consist of an
optional plus or minus sign, an optional radix indicator, and one or more digits. The supported radix
indicators are &H for hexadecimal, &0 for octal and &B or &X for binary (all case insensitive). If no radix
indicator is present, decimal is assumed.

If the provided string has the proper format but represents a value that is too large or too small to be
represented as a Long, the result will be invalid but no such indication will be given.

Examples of integral values accepted by Val uelL() are:
103

+123

&H55

- &B01101

Compatibility

This function is not available in BasicX compatibility mode.

See Also Valuel, ValueS

262

ValueS

Type Subroutine

Invocation ValueS(str, val, flag)

Parameter Method Type Description

str ByVval String The string from which to extract a floating point value.
val ByRef Single The variable to receive the value.

flag ByRef Boolean The variable to receive a success indicator.
Discussion

This routine converts a character representation of a floating pointer number, contained in the str
parameter, to a Si ngl e value returned in the val parameter. If the string is in an acceptable format, the
f | ag parameter is set to Tr ue. Otherwise, the f | ag parameter is set to Fal se and the val parameter
will be 0.0.

The string may contain any number of leading and/or trailing spaces. The value itself may consist solely
of decimal digits or may have a leading plus or minus sign. The value may include a decimal point, with
or without preceding digits. However, there must be a digit either preceding the decimal point or following
it, or both. Optionally, there may be a multiplier value consisting of the letter E (upper or lower case),
optionally followed by a plus or minus sign, followed by one or more digits. Note that the range of
acceptable input is wider than that for real values in ZBasic statements.

If the provided string has the proper format but represents a value that is too large or too small to be
represented as a Si ngl e, the result will be invalid but no such indication will be given.

Examples of floating point numbers accepted by Val ueS() are:

. 30103

3. 14159

- 200.
1e05

+6. 02E+23
123

See Also Valuel, ValueL

263

VarPtr

Type Function returning Unsignedinteger

Invocation VarPtr(var)

Parameter Method Type Description
var ByRef any variable The variable of which the address is desired.
Discussion

This function returns the Unsi gnedl nt eger representation of the RAM address of the specified
variable. Note that for arrays, you may also specify subscript expressions for all of the array dimensions
to yield the address of an individual array element. Without the subscript expressions, the resulting value
will be the address of the first element of the array.

This function is useful for deriving the address to pass to the several functions that require a RAM
address, e.g. Bi t Copy(), RanPeek(), RanPoke(), etc.
This function is identical to MemAddr essU() and is provided for BasicX compatibility.

See Also MemAddress, MemAddressU

264

WaitForinterrupt

Type Subroutine

Invocation WaitForInterrupt(mode)
WaitForinterrupt(mode, intNum)

Parameter Method Type Description

mode ByVval Byte A value specifying what action will trigger the interrupt. See the
discussion below.

intNum ByVval Byte A designator for the interrupt to await (see discussion below).

Discussion

This routine allows a task to suspend itself and wait for an interrupt. The particular interrupt awaited
depends on the i nt Numdesignator combined with the node value. There are three general sources of
interrupts that can be awaited: external interrupts, analog comparator interrupts and pin change
interrupts.

External Interrupts 0-7

A task may await an external interrupt by specifying the value 0 through 7 (corresponding to external
interrupts 0-7, respectively) for the i nt Num parameter. In this case, the allowable values for the node
parameter and their respective meanings are given in the table below. Note, however, that some devices
support only a subset of the hardware interrupt channels. See the table in the Resource Usage section
for details of the supported interrupt channels and the interrupt input pin for each device.

Hardware Interrupt Mode Values

Value Built-in Constant Interrupt Trigger

&H10 zxPi nLow A low level on the interrupt pin.

&H14 zxPi nChange Any logic level change on the interrupt pin.
&H18 zxPi nFal | i ngEdge A high to low transition on the interrupt pin.
&H1C zxPi nRi si ngEdge A low to high transition on the interrupt pin.

All other values are reserved for future use. For compatibility with BasicX, there are similarly named built-
in constants that begin with the prefix bx instead of zx except that there is no equivalent for

zxPi nChange. Additionally, on mega32-based devices, Interrupt 2 is not capable of the first two trigger
modes; it can only be triggered on a rising edge or a falling edge.

The built-in constants Wai t | nt O through Wi t | nt 7 may be used to specify the i nt Numparameter. If
no i nt Num parameter is given, Interrupt 1 is assumed (for compatibility with BasicX). This is equivalent
to using Wi t For I nt errupt (node, 1).

Analog Comparator Interrupt

A task may await an analog comparator interrupt by specifying the value &H10 fori nt Num The
corresponding built-in constant is wai t Anal ogConp. In this case, the node parameter specifies the
comparator output transition that will cause the interrupt to occur.

Analog Comparator Interrupt Mode Values

Value Built-in Constant Interrupt Trigger

&HO0 zxAnal ogConpChange Comparator output rising edge or falling edge.
&H02 zxAnal ogConpFal I'i ng Comparator output falling edge.

&HO3 zxAnal ogConpRi si ng Comparator output rising edge.

265

With all of the node values in the table above, the analog comparator’'s positive input is AINO (Port B, bit
2) and the comparator’s negative input is either AIN1 (Port B, bit 3) or, if the ACME bit is set in a CPU
register (see below), the analog input specified by the multiplexor select bits in Register ADMUX. On the
ZX-24 models, AINO is common with Port A, bit 2 so the latter 1/O pin will need to be configured to be an
input in high-impedance mode. Also, on the ZX-24 models, AIN1 has no external connection so the
negative input must be supplied via the analog multiplexor. The ACME bit is in Register.SFIOR for the
mega32 and megal28-based ZX models and in Register, ADCSRB in the mega644, mega644P,
megal280 and megal281-based ZX models.

Another option for the positive comparator input is to select the internal “band gap” voltage. This voltage
level (approximately 1.23 volts) is selected by adding &H40 to the mode values in the table above. The
built-in constant zxAnal ogRef er ence has this value.

See the section in the Atmel microcontroller documentation describing the analog comparator for further
details.

Pin Change Interrupts

For ZX models based on the mega644, mega644P, megal280 and megal281 CPUs, a task may await a
state change on one or more pins of an 1/0O port. This mode is selected by specifying a special value for
the i nt Numparameter according to the tables below for the respective CPU types.

i nt NumValues for Pin Change Interrupts
Value Built-in Constant Trigger —mega644,P Trigger — megal281 Trigger — megal280
&H20 Wi t Pi nChangeA Pin change on Port A
&H21 Wit Pi nChangeB Pin change on Port B Pin change on Port B Pin change on Port B
&H22 Wi t Pi nChangeC Pin change on Port C
&H23 Wi t Pi nChangeD Pin change on Port D

&H24 Wi t Pi nChangeE Change on Port Bit E.O*
&H29 Wi t Pi nChangelJ Pin change on Port J?
&H2a Wit Pi nChangeK Pin change on Port K
INot available on the ZX-1281e.
2Bits 0-6 only.

For each of the i nt Numvalues in the table above, the node parameter specifies pin change interrupt
enable bits corresponding to each pin of the port. For example, if the mode value is &H21, a pin change
interrupt will be generated if either bit O or bit 5 of the specified port changes state. Clearly, a node value
of zero is useless since no pin change interrupt can ever occur in that case.

When the trigger condition occurs an interrupt will be generated and the task awaiting the interrupt will
rise to the highest priority. This will cause an immediate task switch meaning that the next instruction that
executes will be the one following the Wi t For | nt er rupt () invocation. Note that if another task
performs an action that causes interrupts to be disabled, response to the interrupt will be delayed until
interrupts are re-enabled. The fact that the current task is locked does not prevent the interrupt task from
executing next.

Interrupt Priority

If two or more interrupts occur simultaneously, the task awaiting the highest priority interrupt is activated
first. The priorities of the various interrupts are given in the table below.

266

Interrupt Priority (highest to lowest)

Interrupt O

Interrupt 1

Interrupt 2
Analog Comparator Interrupt

Interrupt 3

Interrupt 4

Interrupt 5

Interrupt 6

Interrupt 7
Pin Change Interrupt, Port A
Pin Change Interrupt, Port B
Pin Change Interrupt, Port C
Pin Change Interrupt, Port D
Pin Change Interrupt, Port E
Pin Change Interrupt, Port J
Pin Change Interrupt, Port K

Note that a task awaiting an interrupt will exhibit some latency between the occurence of the interrupt and
when the waiting task begins execution. The latency depends on a number of factors including the
specific instruction being executed at the time of the interrupt and the number and frequency of system
interrupts that need to be handled. Instructions that may take a long time to execute such as
OutputCapture(), Shiftin(), ShiftOut(), X10Cmd(), etc. will introduce more latency than simple instructions
like assigning a value to a variable.

Examples

Cal | Wit Forlnterrupt(zxPi nChange)
Call Wi tForlnterrupt (zxPi nRi si ngEdge, Wi tlnt2)
Cal | WaitForlnterrupt(&H40, WaitPinChangeA) ' await a change on Port A, bit 6

Resource Usage

Only one task can be awaiting each interrupt at any particular time. If a task is already awaiting the
specified interrupt, another call to Wai t For | nt errupt () for that same interrupt will return immediately.

Also, on the ZX-24 the interrupt pins are common with 1/O pins as shown in the table below. This means
that you should set the corresponding pin to be an input (either tri-state or pull-up) when you want to use
Wai t For I nterrupt (). Note, however, that if the pin is an output and a task is awaiting an interrupt, a
transition on the corresponding output can generate the interrupt for the waiting task. This may be of use
in special situations as a “software interrupt”.

Interrupt and 1/0O Pin Sharing for
ZX-24, ZX-24a, ZX-24p, ZX-24n

Interrupt Port/Bit Pin
0 Port C, Bit 6 6
1 Port C, Bit 1 11
2 Port A Bit 2 18

267

Interrupt Input Pins

ZX Models INTO
ZX-24, ZX-24a, ZX-24p, ZX-24n 6
ZX-40, ZX-40a, ZX-40p, ZX-40n 16
ZX-44, ZX-44a, ZX-44p, ZX-44n 11

ZX-24e, ZX-24ae 18
ZX-1281, ZX-1281n 25
ZX-1280, ZX-1280n 43
ZX-128e, ZX-1281e 12

INT1 INT2 INT3 INT4 INTS5 [INT6 INT7 AINO AIN1
11 18 - - - - - 18 -
17 3 - - - - - 3 4
12 42 - - - - - 42 43
17 26 - - - - - 26 25
26 - - 6 7 8 9 4 5
44 45 46 6 7 8 9 4 5

11 10 9 16 15 14 13 18 17

In the Interrupt Input Pin table above, the columns for INT2 and INT3 indicate that these interrupts are not
available for the ZX-1281. That is because the corresponding I/O pins are used for serial channel Com1.
For the ZX-1280, ZX-128e and ZX-1281e, INT2 and INT 3 will not be available if serial channel Com2 is
in use. Also, INTO and INT1 are not available on megal28, megal28land megal280-based devices
when I12C channel 0 is in use since the same pins are used for the SCL and SDA signals.

For native code devices, the following table lists the ISRs that may be included in your program if it
invokes WaitForinterrupt(). The compiler will attempt to include only those ISRs that are required based
on what it can determine from analysis of the various invocations. If the compiler is unable to determine
which specific ISR is require, all those listed will be included.

ISRs Required

Underlying CPU Int Type ISR Name

nmega644pP External Interrupt I NTO, | NT1, [INT2
Analog Comparator Anal og_Conp
Pin Change Int. PCI NTO, PCINT1, PCINT2, PClINT3

megal28l Externa Interrupt I NTO, INT1, INT2, INT3, INT4, INT5, INT6, |INT7
Analog Comparator Anal og_Conp
Pin Change Int. PCI NTO, PCI NT1, PCINT2

megal280 Externa Interrupt I NTO, INT1, INT2, INT3, INT4, INT5, |INT6, |INT7
Analog Comparator Anal og_Conp
Pin Change Int. PCI NTO, PCI NT1, PClNT2

Compatibility

The second parameter is not supported in BasicX compatibility mode. The built-in constant
zxPi nChange is not available in BasicX. It is not known if the capability is supported or not.

268

WaitForinterval

Type Subroutine

Invocation WaitForInterval(flags)

Parameter Method Type Description
flags ByVval Byte A set of flag bits that control the operation. See the
discussion below.

Discussion

This routine allows a task to suspend itself and wait for an interval timer to expire. The length of the
interval is set by the routine Set | nt er val (). Note that there is only one interval timer that is shared by
all tasks. This means that at most one task may be awaiting the expiration of an interval at any one time.
If another task is already awaiting an interval, calls to WaitForinterval() will return immediately.

The bit values for the f | ags parameter are described in the table below.

Interval Timer Flag Values

Value Description
&HO1 Wait until the next interval expires.
&HO02 Reset the interval counter to its original value.

The remaining bits are currently undefined but may be employed in the future.

After a call to Set | nt er val () the interval counter is decremented on every RTC tick. When it reaches
zero, if a task is awaiting the expiration of the interval, that task will be scheduled to run immediately. If
no task is awaiting the expiration of the interval, the fact that the interval expired is recorded and the
interval counter is reset to the original value.

If the f | ags value is zero when a task calls Wai t For | nt er val (), and an interval expiration has
previously been recorded (with no waiting task), the call will return immediately. Otherwise, the task will
be suspended until the interval expiration. If the f | ags value is &HO01, the task will be suspended until
the next expiration of the interval. If the flags value is &HO03, interval counter will be reloaded and then
the task will be suspended until the interval expires. The last mode of operation is similar to a task calling
Sl eep() . The difference is that when the interval expires, the task is immediately reactivated. With a

Sl eep() call, the task will execute again when its sequential turn comes up.

A task awaiting the expiration of an interval has lower priority than one awaiting an interrupt. Note that a
task awaiting the expiration of an interval will exhibit some latency between the expiration of the interval
and when the waiting task begins execution. The latency depends on a number of factors including the
specific instruction being executed at the time and the number and frequency of system interrupts that
need to be handled. Instructions that may take a long time to execute such as OutputCapture(), Shiftin(),
ShiftOut(), X10Cmd(), etc. will introduce more latency than simple instructions like assigning a value to a
variable.

Example

Call Setlnterval (1.0)

Do
Call Wi tForlnterval (0)
<ot her code here>

Loop

269

Resource Usage

The interval counter is driven off of the real time clock. If interrupts are disabled for long periods of time,
the timing won’'t be accurate. 1/O routines that disable interrupts typically track RTC ticks and then update
the RTC when the I/O process has completed. At this same time, the interval counter will be updated as
well accounting for, at most, one missed expiration.

There is a single, system-wide interval timer. Only one task can be awaiting an interval at a time. If a
task is already waiting, another call to Wai t For | nt er val () will return immediately.

Compatibility

This routine is not available in BasicX compatibility mode.

See Also Setlnterval

270

WatchDog

Type Subroutine

Invocation WatchDog()

Discussion

This routine resets the watchdog timer, preventing it from resetting the system. A watchdog timer is
useful to ensure that your program continues to operate normally.

To implement a watchdog timer you first call O(penWat chDog() to prepare the watchdog timer for use.
Thereatfter, if your program doesn't call Wat chDog() often enough, the watchdog will eventually time out
and cause a system reset.

See Also OpenWatchDog, CloseWatchDog

271

X10Cmd

Type Subroutine

Invocation X10Cmd(outPin, syncPin, house, devCmd, count)
X10Cmd(outPin, syncPin, house, devCmd, count, flags)

Parameter Method Type Description

outPin ByVval Byte The pin on which the X10 signal will be generated.
syncPin ByVval Byte The pin on which the 60Hz sync signal will be received.
house ByVal Byte The house code.

devCmd ByVal Byte The device code or command code.

count ByVal Byte The number of times to repeat the transmission.

flags ByVal Byte Flag bits to control the operation of the command.
Discussion

This routine produces an X-10 compatible signal on the pin specified by out Pi n. The signal is
synchronized to the zero-crossing signal on the pin specified by syncPi n. The generated signal will
include the specified house code and command/device code and will be repeated the specified number of
times without any spacing between the code sequences. The X-10 specification indicates that most
commands should be repeated twice and that successive commands should be separated by at least 3
power line cycles (~50 milliseconds). The exception is for bright and dim commands that can be repeated
any number of times.

If the f | ags parameter is not present, the transmission is implemented as a single 1millisecond pulse
near the edge of the zero crossing signal. If the f| ags parameter is present it has the effects shown in
the table below depending on the value of the parameter.

Function Hex Value Bit Mask
Three-phase output &HO1 XX XX XX X1
50Hz timing &H02 XX XX XX 1X

If the three-phase output flag bit is asserted, three 1 millisecond pulses will be output during each half-
cycle. The 50Hz timing flag is used to control the phase timing of the three-phase output. If the flag bit is
not asserted, 60Hz timing is utilized. This flag bit is only used when generating three-phase output.

External Circuitry

In order to control X-10 devices, you will need a power line interface device such as the PL513 or the
TW523, both of which are available from a variety of sources. The technical documentation for both
interface devices is available on the Internet. A simplified interface between the ZX and the PL513 is
shown below. Note that this circuit will not work for the TW523. The suggested OEM circuit in the X10
Technical Note, or something similar, should be used.

272

+5u
PLS13 Interface
10K

To ZX 1

Input O VAYAY O

Zero Crossing
2

From ZX 0 5‘ :E 6 3
Output O

Simple PL513 Interface

Envelope

Example

The code below sends the commands to turn on device Al.
Const HouseCodeA as Byte = &HO6

Const Devi ceCodel as Byte = &HOc

Const DeviceOn as Byte = &HO5

Cal | X10Cnd(20, 19, HouseCodeA, DeviceCodel, 2)

Call Del ay(0.50)
Call X10Cmd(20, 19, HouseCodeA, DeviceOn, 2)

Compatibility
The BasicX documentation indicates that the transmission process is done in the background. On this

implementation X10Cnd() will not return until the transmission is complete. In BasicX compatibility mode
the f | ags parameter is not supported.

273

Yield

Type Subroutine
Invocation Yield()
Discussion

This routine is can be called whenever it is desirable to allow another task to run that is ready to run. One
particular situation in which it is useful is at the end of a long process during which UpdateRTC() has
been called one or more times. Normally, when an RTC interrupt occurs a task switch is performed
immediately if the current task’s time slice has expired or if a task is awaiting the expiration of an interval
and the interval period has elapsed. However, if interrupts are disabled this automatic task switch cannot
be performed. A call to UpdateRTC() will prepare the system for an eventual task switch which is then
triggered by a call to Yield().

Compatibility

This function is only available for native code targets, e.g. the ZX-24n.

Example

See the example at UpdateRTC.

See Also UpdateRTC

274

	Routines by Category
	Type Conversion Functions
	Mathematical Functions
	Memory-related Routines
	String-related Routines
	Input/Output Routines
	Serial Communication Routines
	Queue Management Routines
	Date/Time Routines
	Data Manipulation Routines
	Task-related Routines
	Miscellaneous Routines

	Resource Usage
	USART
	SPI Interface
	Analog-to-Digital Converters
	Interrupts
	Interrupt Service Routines
	Timers

	Detailed Descriptions
	Abs
	Acos
	ADCtoCom1
	Asc
	Asin
	Atn
	Atn2
	BitCopy
	BlockMove
	BusRead
	BusWrite
	CallTask
	CBit
	CBool
	CByte
	CByteArray
	Ceiling
	Chr
	CInt
	ClearQueue
	CLng
	CloseCom
	CloseI2C
	ClosePWM
	CloseWatchDog
	CloseX10
	CNibble
	Com1toDAC
	ComChannels
	Console.Read
	Console.ReadLine
	Console.Write
	Console.WriteLine
	Cos
	CountTransitions
	CPUSleep
	CRC16
	CRC32
	CSng
	CStr
	CStrHex
	CType
	CUInt
	CULng
	DACPin
	Debug.Print
	DefineBus
	DefineCom
	DefineCom3
	DefineX10
	DegToRad
	Delay
	DelayUntilClockTick
	DisableInt
	EnableInt
	ExitTask
	Exp
	Exp10
	FirstTime
	Fix
	FixB
	FixI
	FixL
	FixUI
	FixUL
	FlipBits
	Floor
	Fmt
	Fraction
	FreqOut
	Get1Wire
	Get1WireByte
	Get1WireData
	GetADC (subroutine form)
	GetADC (function form)
	GetBit
	GetDate
	GetDayNumber
	GetDayOfWeek
	GetDayOfYear
	GetEEPROM
	GetNibble
	GetPersistent
	GetPin
	GetProgMem
	GetQueue
	GetQueueBufferSize
	GetQueueCount
	GetQueueStr
	GetTime
	GetTimestamp
	HiByte
	HiWord
	I2CCmd
	I2CGetByte
	I2CPutByte
	I2CStart
	I2CStop
	IIf
	InputCapture
	InputCaptureEx
	LBound
	LCase
	Left
	Len
	LoByte
	LockTask
	Log
	Log10
	LongJmp
	LoWord
	MakeDword
	MakeString
	MakeWord
	Max
	MemAddress
	MemAddressU
	MemCmp
	MemCopy
	MemSet
	Mid
	MidWord
	Min
	NoOp
	OpenCom
	OpenI2C
	OpenPWM
	OpenQueue
	OpenSPI
	OpenWatchDog
	OpenX10
	OutputCapture
	OutputCaptureEx
	ParityCheck
	Pause
	PeekQueue
	PersistentPeek
	PersistentPoke
	PlaySound
	PortBit
	Pow
	PulseIn (subroutine form)
	PulseIn (function form)
	PulseOut
	Put1Wire
	Put1WireByte
	Put1WireData
	PutBit
	PutDAC
	PutDate
	PutEEPROM
	PutNibble
	PutPersistent
	PutPin
	PutProgMem
	PutQueue
	PutQueueByte
	PutQueueStr
	PutTime
	PutTimeStamp
	PWM
	RadToDeg
	RamPeek
	RamPeekDword
	RamPeekWord
	RamPoke
	RamPokeDword
	RamPokeWord
	Randomize
	RCTime (subroutine form)
	RCTime (function form)
	Reset1Wire
	ResetProcessor
	ResumeTask
	Right
	Rnd
	RunTask
	Semaphore
	SerialNumber
	SetBits
	SetInterval
	SetJmp
	ShiftIn
	ShiftInEx
	ShiftOut
	ShiftOutEx
	Shl
	Shr
	Signum
	Sin
	SizeOf
	SizeOfU
	Sleep
	SngClass
	SPICmd
	Sqr
	StackCheck
	StatusCom
	StatusQueue
	StatusTask
	StatusX10
	StrAddress
	StrCompare
	StrFind
	StrReplace
	StrType
	System.Alloc
	System.DeviceID
	System.Free
	System.HeapHeadRoom
	System.HeapSize
	System.TaskHeadRoom
	Tan
	TaskIsLocked
	TaskIsValid
	Timer
	To<enum>
	ToggleBits
	Trim
	UBound
	UCase
	UnlockTask
	UpdateRTC
	ValueI
	ValueL
	ValueS
	VarPtr
	WaitForInterrupt
	WaitForInterval
	WatchDog
	X10Cmd
	Yield

